• Title/Summary/Keyword: experimental greenhouse

Search Result 297, Processing Time 0.035 seconds

The Experiment for Performance Evaluation of Column-rafter-purlin Connections of an Arch-type Plastic Multi-span Greenhouse (플라스틱 연동온실 기둥-서까래-도리 접합부의 성능 평가 실험)

  • Choi, Man-kwon;Ryu, Hee-ryong;Cho, Myeong-whan;Yu, In-ho;Kim, Seung-yu
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.473-479
    • /
    • 2020
  • In this study, the structural experiment was conducted with two types of specimens to investigate the mechanical behavior of the column-rafter-purlin connection of an arch-type greenhouse under monotonic loading. Based on the experimental results, the flexural performance was analyzed for two types of connections, and connection classification was attempted. Type B showed 77% of flexural performance compared to Type A, and both types showed that the rigidity and flexural strength did not reach the level of the full rigid. The behavior of the column-rafter-purlin connection was dominated by local buckling due to deformation of the weld and fasteners. As a result of connection classification by AISC standard, both Type A and B connections showed a result that did not meet the rigid connection performance assumed during design, and were classified as simple connection. Therefore, the connection performance evaluation and classification results show that the greenhouse design should be made in consideration of connection performance and in order to design a reliable greenhouse structure, a study on establishing clear design standards for the greenhouse connection is necessary.

Change of Organic Matter Decomposition Rates and Greenhouse Gas Emission of the Soil of Gyeongan Stream under Different Environmental Conditions (환경 조건 차이에 의한 경안천 토양의 유기물 분해속도와 온실가스 발생 변화)

  • Choi, In Young;Kang, Min Kyoung;Choi, Jung Hyun
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.75-85
    • /
    • 2013
  • This study investigated the effects of organic matter decomposition on the emission of greenhouse gas under the influence of environmental factors such as change of climate condition ($CO_2$ concentration and temperature), vegetation, and N concentration in the soil of Gyeongan stream in the laboratory. The experimental results showed that organic matter decomposition and $CH_4$, $CO_2$ flux were influenced by changes of complex environmental conditions. Organic matter decomposition rate was affected by changes of climate condition with N concentration and climate condition with vegetation. Through the results of $CH_4$, $CO_2$ flux, $CH_4$ flux was affected by change of climate condition with N concentration and climate condition with vegetation and affected by the presence of vegetation and N concentration. $CO_2$ flux was affected by change of climate condition with vegetation and vegetation with N concentration. According to results of the study, change of (1) climate conditions, (2) vegetation, and (3) N concentration, each have an effect on organic decomposition rate, that also influences emission of greenhouse gas. It is known that climate change is related to an increase in greenhouse gasses in the atmosphere However, additional study will be needed whether vegetation could remove positive effect of nitrogen addition in soil since this study shows opposite results of organic matter decomposition in response to the nitrogen addition.

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Structure and Experimental Results of Automatic Insulation Greenhouse (자동단열온실의 구조 및 운전특성)

  • 이종원;이석건;이현우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1994.05a
    • /
    • pp.88-91
    • /
    • 1994
  • 최근 국내에서도 시설원예가 급격하게 보급되고 있는 실정이다. 하지만, 시설원예가 에너지 소비형의 농경방식이라 지적되고 있는바 에너지절약형 온실의 개발이 필요할 것으로 판단되어, 본 실험실에서는 본 연구와 관련하여 비닐하우스의 벽체를 이중으로 하여 이중벽사이에 단열입자를 송풍기의 케이싱내로 직접 통하게하는 직송방식으로 충전ㆍ회수하는 실험을 실시한 바가 있으며, 그 결과 외기온의 평균이 -4.9$^{\circ}C$인 겨울철 야간에 입자를 충전한 이중비닐 하우스의 내부온도는 평균 9.8$^{\circ}C$로 단열성이 우수함을 알 수 있었다.(중략)

  • PDF

A Secular Change of Strength for Galvanized Steel Pipes for Vinyl Housing (비닐하우스용 아연도강관의 강도경년변화 시험(농업시설))

  • 남상운;김문기;권혁진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.296-301
    • /
    • 2000
  • Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse farms. A secular change of yield strength for galvanized steel pipes was analyzed with the part of buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated that the small sized pipe houses of movable type is 7∼8 years and the large sized pipe houses of fixed type is 14∼15 years.

  • PDF

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.

Effect of Night Interruption with Mist and Shade Cooling Systems on Subsequent Growth and Flowering of Cymbidium 'Red Fire' and 'Yokihi'

  • Kim, Yoon Jin;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.753-761
    • /
    • 2014
  • Growth and flowering of Cymbidium 'Red Fire' and 'Yokihi' plants were examined in a greenhouse with cooling systems in summer, and with night interruption (NI) lighting in winter as a forcing culture system. The greenhouse was divided into two sections with separate cooling controls during the summer season. One section was cooled by a mist system (mist), while the other section was cooled by a shade screen (shade). During the winter, the greenhouse was redivided into three sections within each cooling system. Plants were grown with NI either at a low light intensity of $3-7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(LNI) or a high l ight intensity of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(HNI) u sing h igh-pressure sodium l amps during the 22:00-02:00 HR. The control plants were grown under 9 h short-day condition. NI for 16 weeks and cooling for 9 weeks were employed twice during the 2 years of the experimental period. The air temperature was approximately $2^{\circ}C$ lower in the mist than in the shade and the relative humidity was 80 ${\pm}5%$ in the mist compared to $55{\pm}5%$ in the shade. The daily light integral in the mist section was 48% higher than in the shade section. The time from initial planting to flowering pseudobulb emergence decreased with both LNI and HNI for both cultivars, regardless of the cooling treatments. Under NI conditions, however, between 60% and 1 00% of plants of both cultivars flowered in the mist, whereas no or 20% of 'Red Fire' or 'Yokihi' plants, respectively, flowered in the shade treatment over 2 years. Plants grown under the mist had bigger pseudobulbs than those grown in the shade under both NI treatments. These results show that commercial use of NI in winter and a mist cooling system in summer would decrease crop production time to 2 years and increase profits in Cymbidium forcing culture.

Evaluation of Steel-Pipe Connections in Plastic Greenhouse Using Bending Test (플라스틱 온실의 강관 이음부 휨성능 분석)

  • Choi, Man-Kwon;Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, experimental study performed on steel-pipe connections for structural members of a greenhouse is presented. By those experiments performed, bending moment, deformation and stress distribution of specimens were investigated under four point bending test. The bending performance according to connection method using pin and the stretching is also investigated. The results of bending performance of the no connection specimen were compared to those of other connection specimens. The pin and stretching connection specimens showed lower banding performance than the no connection specimen. The stretching connection method was relatively higher bending performance than the pin connection specimens. According to the results, we proposed the connection method with good bending performance that can be applied to steel-pipe connection in greenhouse.

Evaluation of Overall Heat Transfer Coefficient of Different Greenhouse Thermal Screens Using Building Energy Simulation (BES를 이용한 온실용 보온커튼의 관류열전달계수 산정)

  • Rasheed, Adnan;Lee, Jong Won;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.294-301
    • /
    • 2018
  • In winter, thermal screens are widely used to reduce heat loss from greenhouse to save energy. Unfortunately, not much data are available to the farmer to compare thermal screens while selecting the one that meets their specific requirements. Thus, there is a need to investigate the thermal performance of thermal screens. To address this issue, the Building Energy Simulation (BES) model of a hot box was used to calculate the overall heat transfer coefficient (U-value) of the thermal screens. To validate the model, computed and experimental U-values of single-and double-layered polyethylene (PE) material were compared. This validated model was used to predict the U-values of the selected thermal screens under defined weather conditions. We quantified the U-values of each selected material and significant changes in their U-values were noted in response to different weather conditions. Notably, the thermal properties of the tested screens were taken from the previous literature to calculate U-values using the BES model. The U-values of the thermal screens can help researchers and farmers evaluate their screens and make pre-design decisions that suit their investment capabilities.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.