• Title/Summary/Keyword: experimental dynamics

Search Result 1,825, Processing Time 0.031 seconds

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

An Experimental Study of Fuel Economy and Emission Characteristics for a Heavy-Duty DME Bus (대형 DME버스의 연비 및 배기가스 특성에 관한 연구)

  • Oh, Yong-Il;Pyo, Young-Duk;Kwon, Ock-Bae;Beak, Young-Sun;Cho, Sang-Hyun;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.371-376
    • /
    • 2012
  • The experimental test was conducted for a heavy-duty DME bus in JE-05 exhaust gas test mode using a chassis dynamometer, exhaust gas analyzers, and a PM measurement system. The heavy-duty DME bus was not equipped with after-treatment systems such as DOC or DPF. The dynamic behavior, emission characteristics, and fuel economy of the bus were investigated with an 8.0-liter, 6-cylinder conventional diesel engine. The results showed that the dynamic behavior in DME mode was almost the same as in diesel mode. However, there was little difference among the two operation modes for $NO_x$ and CO emissions. THC emissions were lower for DME mode than for diesel mode. Also, the amount of PM emissions was remarkably lower than for the diesel mode because DME contains a greater amount of oxygen than diesel. The data showed that $CO_2$ emissions were almost similar in the two modes but fuel economy (calculated using heating value) was lower for DME mode than for diesel mode.

A Real-time Dual-mode Temporal Synchronization and Compensation based on Reliability Measure in Stereoscopic Video (3D 입체 영상 시스템에서 신뢰도를 활용한 듀얼 모드 실시간 동기 에러 검출 및 보상 방법)

  • Kim, Giseok;Cho, Jae-Soo;Lee, Gwangsoon;Lee, Eung-Don
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.896-906
    • /
    • 2014
  • In this paper, a real-time dual-mode temporal synchronization and compensation method based on a new reliability measure in stereoscopic video is proposed. The goal of temporal alignment is to detect the temporal asynchrony and recover synchronization of the two video streams. The accuracy of the temporal synchronization algorithm depends on the 3DTV contents. In order to compensate the temporal synchronization error, it is necessary to judge whether the result of the temporal synchronization is reliable or not. Based on our recently developed temporal synchronization method[1], we define a new reliability measure for the result of the temporal synchronization method. Furthermore, we developed a dual-mode temporal synchronization method, which uses a usual texture matching method and the temporal spatiogram method[1]. The new reliability measure is based on two distinctive features, a dynamic feature for scene change and a matching distinction feature. Various experimental results show the effectiveness of the proposed method. The proposed algorithms are evaluated and verified through an experimental system implemented for 3DTV.

Evaluation of Modified Design Fire Curves for Liquid Pool Fires Using the FDS and CFAST (FDS와 CFAST를 이용한 액체 풀화재의 수정된 디자인 화재곡선 평가 연구)

  • Baek, Bitna;Oh, Chang Bo;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.7-16
    • /
    • 2018
  • In this study, the previous design fire curve for fire simulation was modified and re-suggested. Numerical simulations with the FDS and CFAST were performed for the n-heptane and n-octane pool fires in the ISO 9705 compartment to evaluate the prediction performances of the previous 1-stage and modified 2-stage design fire curves. The numerical results were compared with the experimental temperature and concentrations of $O_2$ and $CO_2$. The FDS and CFAST simulations with the 2-stage design fire curve showed better prediction performance for the variation of temperature and major species concentration than the simulations with 1-stage design fire curve. Especially, the simulations with the 2-stage design fire curve agreed with the experimental temperature more reasonably than the results with the 1-stage design fire curve. The FDS and CFAST simulations showed good prediction performance for the temperature in the upper layer of compartment and the results with the FDS and CFAST were similar to each other. However, the FDS and CFAST showed poor and different prediction performance for the temperature in the lower layer of compartment.

A numerical fluid dynamic study of a high temperature operating cyclone (고온 작동 싸이클론 유체역학적 거동 전산 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.11
    • /
    • pp.1033-1040
    • /
    • 2009
  • One thing to note in cyclone operation and design is to minimize the pressure drop with the enhancement of the efficiency of dust collection. This can be facilitated by the detailed resolution of complex fluid flow occurring inside a cyclone. To this end, the main objective of this study was to obtain the detailed fluid dynamics by the development of a reliable computation method and thereby to figure out the physics of dust collection mechanism for more extreme environment caused by high temperature and pressure condition. First of all, the computer program developed was evaluated against experimental result. That is, the numerical calculation predicts well the data of experimental pressure drop as a function of flow rate for the elevated pressure and temperature condition employed in this study. The increase of pressure and temperature generally affects significantly the collection efficiency of fine particle but the effect of pressure and temperature appears contrary each other. Therefore, the decrease of collection efficiency caused by the high operating temperature mainly due to the decrease of gaseous density can be remedied by increase of operating pressure. After the evaluation of the program, a series of parametric investigations are performed in terms of major cyclone design or operating parameters such as tangential velocity and vortex finder diameter for dusts of a certain range of particle diameters, etc. As expected, tangential velocity plays the most important effect on the collection efficiency. And the efficiency was not affected significantly by the change of the length of vortex finder but the diameter of vortex finder plays an important role for the enhancement of collection efficiency.

A Preliminary Study for the Prediction of Leaking-Oil Amount from a Ruptured Tank (파손된 기름 탱크로부터의 유출양 산정을 위한 기초 연구)

  • Kim Wu-Joan;Lee Young-Yeon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.21-31
    • /
    • 2001
  • When an oil-spilling accident occurs at sea, it is of the primary importance to predict the amount of oil leakage for the swift response and decision-making. The simplest method of oil-leakage estimation is based on the hydrostatic pressure balance between oil inside the tank and seawater outside of leakage hole, that is the so-called Torricelli equilibrium relation. However, there exists discrepancy between the reality and the Torricelli relation, since the latter is obtained from the quasi-steady treatment of Bernoulli equation ignoring viscous friction. A preliminary experiment has been performed to find out the oil-leaking speed and shape. Soy-bean oil inside the inner tank was ejected into water of the outer tank through four different leakage holes to record the amount of oil leakage. Furthermore, a CFD (Computational Fluid Dynamics) method was utilized to simulate the experimental situation. The Wavier-Stokes equations were solved for two-density flow of oil and water. VOF method was employed to capture the shape of their interface. It is found that the oil-leaking speed varies due to the frictional resistance of the leakage hole passage dependent on its aspect ratio. The Torricelli factor relating the speed predicted by using the hydrostatic balance and the real leakage speed is assessed. For the present experimental setup, Torricelli factors were in the range of 35%~55% depending on the aspect ratio of leakage holes. On the other hand, CFD results predicted that Torricelli factor could be 52% regardless of the aspect ratio of the leakage holes, when the frictional resistance of leakage hole passage was neglected.

  • PDF

Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System (반도체 폐가스 처리용 열분해반응기의 입구형상이 열유동 특성에 미치는 영향에 관한 수치해석 연구)

  • Yoon, Jonghyuk;Kim, Youngbae;Song, Hyungwoon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.510-518
    • /
    • 2018
  • Recently, lots of interests have been concentrated on the scrubber system that abates waste gases produced from semiconductor manufacturing processes. An effective design of the thermal decomposition reactor inside a scrubber system is significantly important since it is directly related to the removal performance of pollutants and overall stabilities. In the present study, a computational fluid dynamics (CFD) analysis was conducted to figure out the thermal and flow characteristics inside the reactor of wet scrubber. In order to verify the numerical method, the temperature at several monitoring points was compared to that of experimental results. Average error rates of 1.27~2.27% between both the results were achieved, and numerical results of the temperature distribution were in good agreement with the experimental data. By using the validated numerical method, the effect of the reactor geometry on the heat transfer rate was also taken into consideration. From the result, it was observed that the flow and temperature uniformity were significantly improved. Overall, our current study could provide useful information to identify the fluid behavior and thermal performance for various scrubber systems.

Detailed Investigation on the Dynamic Excess Pore Water Pressure through Liquefaction Tests using Various Dynamic Loadings (다양한 진동하중의 액상화 시험을 통한 동적 과잉간극수압에 대한 상세분석)

  • Choi, Jae-Soon;Jang, Seo-Yong;Kim, Soo-Il
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.81-94
    • /
    • 2007
  • In most experimental researches on the liquefaction phenomenon, an earthquake as a random vibration has been regraded as a sinusoidal wave or a triangular wave with an equivalent amplitude. Together with the development in the part of signal control and data acquisition, dynamic experimental equipments in the soil dynamics have also developed rapidly and further more, several real earthquakes have been simulated in the large model test such as shaking table tests and centrifuge tests. In Korea, several elementary laboratory tests to simulate the real earthquake load were performed. From these test results, it was reported that the sinusoidal wave cannot reliably reflect the soil dynamic behavior under the real earthquake motion. In this study, 4 types of dynamic motions such as the sinusoidal wave, the triangular wave, the incremental triangular wave and several real earthquake motions which were classified with shock-type and vibration-type were loaded to find something new to explain the change of the excess pore water pressure under the real earthquake load. Through the detailed investigation and comparison on all test results, it is found that the dynamic flow is generated by the soil plastic deformation and the velocity head of dynamic flow is changed the pressure head in the un-drained condition. It can be concluded that the change of the excess pore water pressure is related to the pressure head of dynamic flow. Lastly, a new hypothesis to explain such a liquefaction initiation phenomenon under the real earthquake load is also proposed and verified.

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Estimation of Longitudinal Dynamic Stability Derivatives for a Tailless Aircraft Using Dynamic Mesh Method (Dynamic Mesh 기법을 활용한 무미익 비행체 종축 동안정 미계수 예측)

  • Chung, Hyoung-Seog;Yang, Kwang-Jin;Kwon, Ky-Beom;Lee, Ho-Keun;Kim, Sun-Tae;Lee, Myung-Sup;Reu, Taekyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.3
    • /
    • pp.232-242
    • /
    • 2015
  • For stealth performance consideration, many UAV designs are adopting tailless lambda-shaped configurations which are likely to have unsteady dynamic characteristics. In order to control such UAVs through automatic flight control system, more accurate estimation of dynamic stability derivatives becomes essential. In this paper, dynamic stability derivatives of a tailless lambda-shaped UAV are estimated through numerically simulated forced oscillation method incorporating dynamic mesh technique. First, the methodology is validated by benchmarking the CFD results against previously published experimental results of the Standard Dynamics Model(SDM). The dependency of initial angle of attack, oscillation frequency and oscillation magnitude on the dynamic stability derivatives of a tailless UAV configuration is then studied. The results show reasonable agreements with experimental reference data and prove the validity and efficiency of the concept of using CFD to estimate the dynamic derivatives.