• Title/Summary/Keyword: expansion valve

Search Result 243, Processing Time 0.03 seconds

Estimation of Probability Density Functions of Damage Parameter for Valve Leakage Detection in Reciprocating Pump Used in Nuclear Power Plants

  • Lee, Jong Kyeom;Kim, Tae Yun;Kim, Hyun Su;Chai, Jang-Bom;Lee, Jin Woo
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1280-1290
    • /
    • 2016
  • This paper presents an advanced estimation method for obtaining the probability density functions of a damage parameter for valve leakage detection in a reciprocating pump. The estimation method is based on a comparison of model data which are simulated by using a mathematical model, and experimental data which are measured on the inside and outside of the reciprocating pump in operation. The mathematical model, which is simplified and extended on the basis of previous models, describes not only the normal state of the pump, but also its abnormal state caused by valve leakage. The pressure in the cylinder is expressed as a function of the crankshaft angle, and an additional volume flow rate due to the valve leakage is quantified by a damage parameter in the mathematical model. The change in the cylinder pressure profiles due to the suction valve leakage is noticeable in the compression and expansion modes of the pump. The damage parameter value over 300 cycles is calculated in two ways, considering advance or delay in the opening and closing angles of the discharge valves. The probability density functions of the damage parameter are compared for diagnosis and prognosis on the basis of the probabilistic features of valve leakage.

Structural Evaluations of the Bellows for a Gas-generator Lox Shut-off Valve (가스발생기 산화제 개폐밸브 주름관 구조 평가)

  • Yoo, Jae-Han;Lee, Joong-Youp;Lee, Soo-Yong;Lim, Hyeong-Tae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.91-97
    • /
    • 2012
  • The structural analyses and experimental results for the bellows of a gas-generator liquid oxygen shut-off valve were presented. The bellows experiences axial compression and external high pressure loadings at cryogenic temperatures. The analyses were performed using EJMA (Expansion Joint Manufacturing Association) standard and the commercial FE (finite element) analysis program, Abaqus v6.9, at room and cryogenic temperatures. The spring modulus, the induced stress and the expected fatigue life of the bellows were compared respectively. The effects by the contact and the material plasticity on the FE analysis results were also analyzed. Also, FE analyses related to a burst test were presented.

An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles (무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구)

  • Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.

Effect of Controlling Exhaust Valve Timing on Engine Efficiency in LIVC and EIVC States in a 2-Cylinder Small Turbo Gasoline Engine (2기통 소형 터보가솔린엔진에서 배기 밸브 타이밍 제어에 따른 LIVC, EIVC 상태에서의 엔진 효율 영향)

  • Jang, Jinyoung;Woo, Youngmin;Shin, Youngjin;Ko, Ahyun;Jung, Yongjin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Han, Myunghoon
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2022
  • This study examines whether engine fuel efficiency is improved by optimization of the exhaust valve timing in a state where the intake valve timing has been optimized in a small turbo gasoline engine that has intake cams and exhaust cams with fixed valve opening periods. When the exhaust valve is opened late, the expansion stroke is longer, and the efficiency can be improved. A 2-cylinder turbo gasoline engine with 0.8 liters of displacement and an MPI (Multi Point Injection) fuel system was used. The engine was operated at 1,500 and 3,000 rpm, and the load conditions included a partial load of 50 N·m and a high load of 70 N·m. Data was recorded as the exhaust valve timing was controlled, and this was used to calculate the efficiency of combustion using a heat release, the fuel conversion efficiency, and the pumping loss. Results and the hydrocarbon concentrations in the exhaust gas were compared for each condition. Experiment results confirmed that additional fuel efficiency improvements are possible through exhaust valve timing control at 1,500 rpm and 50 N·m. However, in other operating conditions, fuel efficiency improvements could not be obtained through exhaust valve timing control because cases where the pumping loss and fuel/air mixture slip increased when the exhaust valve timing changed and the fuel efficiency declined.

An Experimental Study on Application of Hydrocarbon Refrigerants for Heat Pump (히트펌프에서 탄화수소냉매 적용에 관한 실험적 연구)

  • Yoo, Seong-Yeon;Park, Dong-Seong;Kang, Tae-Seok;Lee, Je-Myo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1264-1269
    • /
    • 2004
  • This research describes the application of hydrocarbon refrigerants for heat pump system which is needed for fish farm. Tested refrigerants are HCFC-22 and hydrocarbon refrigerants(CARE 50 and ASR-20). CARE 50 is mixture of R-290 and R-170, and ASR-20 is mixture of R-152a, R-290 and other additives. Heat pump consist of shell and tube heat exchanger, scroll compressor, expansion valve and accumulator. Manual expansion valve is used for testing of wide range evaporating temperature. Hydrocarbon refrigerants show a good performance as an alternative for HCFC-22 in the range of evaporating temperature from $-6^{\circ}C$ to $6^{\circ}C$.

  • PDF

Design of Multi Fuzzy Controller for HVAC System (HVAC 시스템에 대한 Multi Fuzzy 제어기 설계)

  • Jung, Seung-Hyun;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1923-1924
    • /
    • 2006
  • 본 논문은 HVAC(heating, ventilating, and air conditioning) 시스템에 대하여 Multi Fuzzy 제어기 설계를 제안한다. HVAC 시스템은 Compressor(압축기), Condenser(응축기), Evaporator(증발기), Expansion Valve 로 구성되며, 각각의 기기에 대한 제어가 독립적으로 이루여져 있다. 기존의 제어가 한 제어기를 사용한 단일방식으로 이루어지다보니 HVAC 시스템의 특성인 냉매의 상태가 달라지면 시스템 전반적으로 그 영향이 파급되는 부분까지 고려를 해 주지 못하고, 제어기의 성능이 효율적이지 못했다. 본 논문에서는 비선형성이 강하고 불확실하며 복잡한 시스템을 쉽게 제어할 수 있는 Fuzzy 제어기를 구성하여 Expansion Valve 와 Compressor 에서 동시에 제어하는 Multi 제어기를 설계한다. 제안된 Multi Fuzzy 제어기는 HVAC 시스템의 효율성과 안정성에 기초하여, 과열도와 저압을 제어한다.

  • PDF

Experimental Study on the Cooling Performance of a Variable Speed $CO_2$ Cycle with Internal Heat Exchanger and Electronic Expansion Valve (내부열교환기 및 전자팽창장치를 적용한 가변속 이산화탄소 사이클의 냉방성능에 관한 실험적 연구)

  • Cho Honghyun;Ryu Changgi;Kim Yongchan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Since a transcritical $CO_2$ cycle shows lower performance than conventional air conditioners in the cooling mode operation, it is required to enhance the performance of the $CO_2$ cycle by applying advanced technologies and optimizing components. In this study, the cooling performance of a $CO_2$ system measured by varying refrigerant charge amount, compressor frequency, EEV opening and length of internal heat exchanger. As a result, the cooling COP of the basic system without internal heat exchanger was 2.1. The cooling performance of the modified cycle applying internal heat exchanger improved by $4-9\%$ over the basic cycle.

EEV Superheat Control of a Multi-type Heat Pump by Using Dither Signal (멀티형 히트펌프 전자팽창밸브의 디더 신호를 적용한 과열도 제어)

  • 한도영;표수환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.948-953
    • /
    • 2002
  • The electronic expansion valve (EEV) may be used to control the refrigerant flow rate for the multi-type heat pump. Stepping motor driven EEV may precisely control the refrigerant flow rate to meet each internal load requirement. To control the EEV, PI algorithm may be used. But the hysteresis of EEV deteriorates the performance of superheat control. To reduce the performance degradation, the PI algorithm along with the dither signal may be used. The dither signal, with about 10 times higher frequency than the system crossover frequency and about 10 times larger magnitude than the deadband of hysteresis, was selected for the superheat control of EEV. Experimental results showed the improvement of EEV control by adding the dither signal to the PI algorithm.

Analysis of the steady state and transient characteristics of a multi-type refrigeration system (멀티형 냉동 시스템의 정상상태 및 과도응답 특성 해석)

  • Lee, Gil-Bong;Yoo, Keun-Joong;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.439-444
    • /
    • 2005
  • Steady state simulation and dynamic simulation were performed to analyze the operational characteristics of a multi-type refrigeration system, Fully distributed model was adopted to simulate the steady state and transient responses of the system. The main aim was to see the effect of one indoor unit on the other unit. Numerical simulations were carried out for various operation conditions of an indoor unit - secondary fluid inlet temperature, mass flow rate and expansion valve opening. The results showed that the inlet temperature and mass flow rate of the secondary fluid of one indoor unit had minor effect on the operation of the other unit. However, the opening of the expansion valve had significant effect on the performance of the other unit.

  • PDF

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.