• 제목/요약/키워드: expansion valve

검색결과 243건 처리시간 0.031초

항공기 외장형 정찰 장비용 냉각 시스템의 성능 특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics of Cooling System for Aircraft External Reconnaissance Stores)

  • 정대윤;이행복
    • 한국군사과학기술학회지
    • /
    • 제16권1호
    • /
    • pp.74-80
    • /
    • 2013
  • In this paper, we have proposed a vapor cycle refrigeration system as a cooling system to provide cooling air to the aircraft external reconnaissance stores. In the proposed vapor cycle system, receiver which prevents refrigerant from subcooling was eliminated and thermal expansion valve was replaced with electronic expansion valve. The vapor cycle refrigeration system is aimed to provide cooling air to the reconnaissance stores which is added to the aircraft in the form of external store. The wide temperature range of ambient air from the flight conditions can decrease the cooling performance and can make the refrigeration system unstable in low ambient temperature. Performance characteristics of the vapor cycle refrigeration system has been experimented under air conditions which is derived from the flight envelope. From the experiments, the vapor cycle refrigeration system has been proved to provide enough cooling air to the reconnaissance equipment and to be stable under all the flight conditions.

Research on fast cool-down of orifice pulse tube refrigerator by controlling orifice valve opening

  • Kim, Hyo-Bong;Park, Jong-Ho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권4호
    • /
    • pp.36-40
    • /
    • 2010
  • In this paper, a noble method for rapid cooldown of pulse tube refrigerator (PTR) was proposed and experimentally investigated. An orifice pulse tube refrigerator generates refrigeration effect by expansion PV work at the cold-end, and its amount is affected by the orifice valve opening. There exists the optimum valve opening for maximum cooling capacity and it varies as cold-end temperature. It is verified from simulation results using isothermal model that the optimum valve opening increases as the cold-end temperature increases. In the experiments, a single stage orifice pulse tube refrigerator is fabricated and tested. The fabricated PTR shows 97.5 K of no-load temperature and 10 W at 110 K of cooling capacity with the fixed orifice valve opening. From experiments, the initial cooldown curve with four cases of valve opening control scenario are obtained. And it is experimentally verified that the initial cooldown time can be reduced through the control of orifice valve opening.

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • 제7권1호
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성 (Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period)

  • 이광주;강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.

밸브 간극에 따른 밸브트레인 거동 연구 (Study of Valve Train Motion According to Valve Clearance)

  • 민선기
    • 한국융합학회논문지
    • /
    • 제8권10호
    • /
    • pp.193-199
    • /
    • 2017
  • 기계적 태핏은 유압 태핏과 비교하여 원가와 마찰 손실을 줄일 수 있어 사용된다. 그러나 기계적 태핏은 캠과 밸브 사이의 간극을 조절하는 기능이 없으므로 밸브의 열팽창을 고려하여 캠과 밸브 사이의 거리를 측정하여 선정된다. 그러므로 충분한 워밍 업 후에는 밸브 간극이 거의 없지만 그 전에는 밸브 간극이 존재한다. 특히 냉간 작동 조건에서는 비교적 큰 편이고 소음과 진동 같은 문제를 발생시킬 수 있다. 본 논문에서는 밸브 간극을 변경시켜 가며 각각의 조건에서의 밸브 리프트, 속도, 가속도, 시팅 속도, 바운싱 높이 등에 대하여 시험과 해석을 통하여 연구되었다. 밸브 간극이 증가할수록 램프 구간이 감소하게 되어 밸브의 거동에 좋지 않은 영향을 미치는 것을 확인할 수 있었다.

동일열량공급하의 밸브오버랩기간 변화에 대한 역화억제 검토 (A Investigation of Back Fire Control with Valve Overlap Period Change In the Same Supply Energy)

  • 강준경;;노기철;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제18권3호
    • /
    • pp.348-355
    • /
    • 2007
  • To grasp a feasibility of back fire control by valve overlap period, back fire limit equivalence ratio was estimated with valve overlap period which has the same supply energy and positive intake pressure as valve overlap period $300^{\circ}\;CA$. As the result, it was shown that the smaller valve overlap period has the higher back fire limit equivalence ratio under valve overlap period $300^{\circ}\;CA$ as well as VOP $0^{\circ}\;CA$. This result means that expansion of back fire equivalence ratio by decreasing valve overlap period was caused by decrease of back flow duration of flame from in-cylinder to intake port than decrease of lower supply energy.

에어컨디셔너의 냉매배관을 연결하는 커플링의 유동해석 (Flux Analysis of Air-conditioner Coupling)

  • 이수열;김우승;조수;성욱주;박희문;심경종
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1031-1036
    • /
    • 2009
  • This study is intended to identify how quick disconnect coupling which connects with refrigerant piping of air-conditioner using R-22 refrigerant has effect on characteristics of flux. in the case where the air-conditioner installs utilizes quick disconnect coupling, COP has an effect on the quantity of cooling load because of changing flow rate and physical properties of refrigerant which flow into an entrance of expansion valve from coupling. Variation of flow rate can be regulated by changing expansion-contraction angle; $\alpha$ of an entrance and an exit of coupling. In this study, quick disconnect coupling is presented flow of coupling by using FLUENT as heat flow program. To have an effect on the expansion entrance valve, and by changing expansion-contraction angle; $\alpha$ of an entrance and an exit

  • PDF

밀폐배관계에 있어서의 열팽창에 대한 안전설계 및 시스템 최적 설정에 관한 고찰 (A Study on Safety Engineering & System Optimization in the Closed Piping System)

  • 차순철;황순용;강경식
    • 대한안전경영과학회지
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 2007
  • To improve the practical application of the thermal expansion of closed long pipeline exposing to external heating sources such as solar energy, safety engineering and system optimization for relief valve in the closed piping system are suggested through theoretical approach, correlation in view of temperature and pressure increase caused by external solar energy in the closed piping system. The profile for thermal relief valve including relieving capacity, influx heat energy, sizing criteria, set pressure, selection against back pressure is also presented. It is noted that following topic on solar relief valve should be applied to engineering, installation and commissioning.

디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구 (A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine)

  • 김철수;정영관;장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

압축기 토출벨브의 유체-구조 연계해석 및 충돌해석 (Flow Structure Interaction 3-D Reciprocating Compressor and Impact Analyses of Compressor Discharge Valve)

  • 레사 옥타비안티;김동현;박강균;정원현;안재우;문경호;고영필;김형식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.633-640
    • /
    • 2007
  • In this paper, 3-D reciprocating compressor is taken into flow-structure interaction analysis. The full cycle process consisted of cylinder expansion and compression has been modeled without considering flow leakage through cylinder wall. Fully-coupled FSI analysis of this compressor model was iteratively solved and gives sufficient result with the experimental test. The study is emphasized to thoroughly investigate discharge valve motion, opening and closing, in order to determine discharge valve region which is prone to have high effective stress. The cylinder pressure is successfully validated before conducting impact analyses between discharge valve and other susceptible supported structure. Velocity profile has been obtained in FSI analysis is used as initial condition to carry out further impact analyses. Stress result of discharge valve and valve spring gives preliminary estimation of higher stress area due to its impact phenomena.

  • PDF