• 제목/요약/키워드: expansion tube

검색결과 292건 처리시간 0.025초

튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구 (Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube)

  • 박주원;김대해;박대근;윤성환
    • 해양환경안전학회지
    • /
    • 제26권7호
    • /
    • pp.915-921
    • /
    • 2020
  • 연소실 내 공조현상으로 인해 발생되는 열음향 불안정성은 안정적인 연소시스템을 구현하기 위해 해결해야 하는 고질적인 문제로 제기되어 왔다. 열음향 불안정성은 크게 1차 2차 열음향 불안정성으로 나뉘며, 본 연구에서는 열음향 불안정성 중 2차 열음향 불안정성의 천이에 관해 열손실이 미치는 영향에 대한 실험적 연구를 진행하였다. 2차 열음향 불안정성을 발생시키기 위해 한쪽 끝이 열린 1/4 파장 공명기를 채택하여 수직으로 설치하였고, 공명기 내부에는 예혼합 가스를 주입하였다. 또한 공명기 상단으로 발생하는 열손실 효과를 비교하기 위해 추가적으로 외부 동축류 관을 설치하였다. 연료 농후조건의 예혼합 가스만을 채택하여 주입하였기 때문에 동축관에 주입되는 기체에 따라 공명기 상부에 추가적인 확산화염이 형성될 수 있다. 그 결과 확산화염이 발생되었을 경우 공명기 상단으로의 열손실이 감소하며 2차 열음향 불안정성이 발현되었으며, 확산화염이 억제되어 공명기 상단으로의 열손실이 증가하였을 경우 2차 열음향 불안정성의 발현이 억제되는 결과를 도출하였다.

설비공학 분야의 최근 연구 동향 : 2012년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2012)

  • 한화택;이대영;김사량;김현정;최종민;박준석;김수민
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.346-361
    • /
    • 2013
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2012. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. The conclusions are as follows : (1) The research works on thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and valves, fuel cells and power plants, ground-coupled heat pumps, and general heat and mass transfer systems. Research issues are mainly focused on new and renewable energy systems, such as fuel cells, ocean thermal energy conversion power plants, and ground-coupled heat pump systems. (2) Research works on the heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer, and industrial heat exchangers. Researches on heat transfer characteristics included the results for natural convection in a square enclosure with two hot circular cylinders, non-uniform grooved tube considering tube expansion, single-tube annular baffle system, broadcasting LED light with ion wind generator, mechanical property and microstructure of SA213 P92 boiler pipe steel, and flat plate using multiple tripping wires. In the area of pool boiling and condensing heat transfer, researches on the design of a micro-channel heat exchanger for a heat pump, numerical simulation of a heat pump evaporator considering the pressure drop in the distributor and capillary tubes, critical heat flux on a thermoexcel-E enhanced surface, and the performance of a fin-and-tube condenser with non-uniform air distribution and different tube types were actively carried out. In the area of industrial heat exchangers, researches on a plate heat exchanger type dehumidifier, fin-tube heat exchanger, an electric circuit transient analogy model in a vertical closed loop ground heat exchanger, heat transfer characteristics of a double skin window for plant factory, a regenerative heat exchanger depending on its porous structure, and various types of plate heat exchangers were performed. (3) In the field of refrigeration, various studies were executed to improve refrigeration system performance, and to evaluate the applicability of alternative refrigerants and new components. Various topics were presented in the area of refrigeration cycle. Research issues mainly focused on the enhancement of the system performance. In the alternative refrigerant area, studies on CO2, R32/R152a mixture, and R1234yf were performed. Studies on the design and performance analysis of various compressors and evaporator were executed. (4) In building mechanical system research fields, twenty-nine studies were conducted to achieve effective design of mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, renewable energy systems, and lighting systems in buildings. New designs and performance tests using numerical methods and experiments provide useful information and key data, which can improve the energy efficiency of buildings. (5) In the fields of the architectural environment, studies for various purposes, such as indoor environment, building energy, and renewable energy were performed. In particular, building energy-related researches and renewable energy systems have been mainly studied, reflecting interests in global climate change, and efforts to reduce building energy consumption by government and architectural specialists. In addition, many researches have been conducted regarding indoor environments.

개심수술후 혈량 증가를 위한 10% Pentastarch와 5% Albumin 용액의 비교연구 (10% Pentastarch Versus 5% Albumin Solution for Volume Expansion Following Cariopulmonary Bypass in Patients Undergoing Open Heart Surgery)

  • 장병철
    • Journal of Chest Surgery
    • /
    • 제27권3호
    • /
    • pp.177-186
    • /
    • 1994
  • Pentastarch is a hydroxyethyl starch similar to hetastarch, but lower average molecular weight and fewer hydroxyethyl groups which result in enhanced enzymatic hydrolysis and faster renal elimination.This report was performed to compare the clinical efficacy and safety of 10 % pentastarch[Pentaspan , group I] for plasma volume expansion after open heart surgery with that of 5% albumin[Plasmanate, group II]. There were no statistically significant differences between the group I [n=18] and group II [n:19] in the preoperative parameters [age, sex, body weight] and operative parameters[bypass time, aorta cross clamping time]. During the first 24 hours after arrival of the patient in the surgical intensive care unit, colloid solution [500--1000 ml] was infused to maintain left atrial pressure of more than 8 mmHg, or cardiac index of 2.0 L/min/M2 of more. In results, there were 3 complications of hypotension immediately after infusion of 5 % albumin solution and 2 among the 3 patients were excluded for the study. However there was no complication after infusion of 10 % pentastarch solution. Hemodynamic responses to infusion was similar for both groups, although in group I a greater increase in both left atrial pressure[mean 1.8 versus 0.7 mmHg, p< 0.05] and right atrial pressure [mean 2.2 versus 1.7 mmHg, p < 0.05] was observed during infusion of the first 500 ml. There were no significant differences in any of the measured respiratory parameters[PaO2, intrapulmonary shunt, and effective lung compliance]. Homodilution with colloid significantly reduced hemoglobin [mean 1.2 versus 0.8 gm/dl], and serum protein and albumin level[total protein;4.8$\pm$ 0.5 versus 5.2 $\pm$0.5 gm/dl, p < 0.05: albumin: 3.2 $\pm$0.4 versus 3.6 $\pm$0.6 gm/dl, p < 0.05] by 6:00 AM on 1 day postoperatively, however there were no significant differences on 7 day postoperatively. The mean serum colloid osmotic pressure and osmolarity was similar in both group.There were no abnormal findings of liver function and kidney function in all the patients. There were no significant between-group differences in bleeding time, platelets, prothrombin time, activated partial thromboplastin time and amount of chest tube output measured on 1st and 7th postoperative day. These findings demonstrated that 10% pentastarch is more effective and safe for plasma volume expension than 5 % albumin solution with no adverse effects on coagulation. Also 10 % pentastarch is less expensive than 5 % albumin and it would appeare to be a reasonable first choice for plasma volume expansion.

  • PDF

터보 차져 디젤 엔진에서의 기류음 감소를 위한 연구 (A study on the reduction of the flow-induced noise in turbo-charger diesel engines)

  • 강웅;김형진;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2913-2917
    • /
    • 2007
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within the compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation was associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in turbocharger system. In this study, a sharp-edged reactive-type muffler was devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler were investigated which is related to the unsteadiness of turbulence and pressure in turbocharger system. A transfer matrix method was used to analyze the transmission loss of the muffler. Simple expansion muffler with extended tube of the reactive type is proposed for the reduction of high frequency component noise. Turbulence computation was carried out by a standard ${\kappa}-{\varepsilon}$ model. An optimal design condition of the muffler was obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise was achieved at the optimal design of the muffler as compared with the conventional turbocharger system.

  • PDF

압축기용 흡입머플러의 성능개선에 관한 연구 (A Study on Improvement of Efficiency of Suction Muffler for Compressor)

  • 정경훈;이은영;김우영;이유엽;황원걸
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.220-227
    • /
    • 2002
  • The design of suction muffler for compressor aims to achieve a maximum noise reduction and a minimum pressure loss. Until now, the design process has been performed experimentally rather than theoretically. In this paper, to achieve the maximum noise reduction and minimum pressure loss. we studied the effect of the shape and volume of the expansion tube of the muffler on TL and pressure drop. We made an extensive use of computer program such as SYSNOISE. FLUENT, and STAR-CD to calculate the TL and pressure distribution of suction muffler. The design of the muffler is optimized with respect to flow loss and TL. Experiments are performed to check the result of design change, which proves satisfactory results. It is expected that this process can reduce time to design a muffler in the fields.

수열원 펌프에서의 R-22 대체냉매의 응축열전달특성에 관한 연구 (Condensing Heat Transfer Charactristics of R-22 Alternative Refrigerants on Water Sources Heat Pump)

  • 김기수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.285-293
    • /
    • 1998
  • This paper presents an experimental study on condensing heat transfer characteristics of R-22 alternative refrigerants, R-290 and R-410a on water sources heat pump. The apparatus mainly consisted of vapor pump condenser used to the test section evaporator manual expansion valve and measuring device. Test section constructed a smoothed tube of 10.07 mm ID and 12.7mm OD with a total length 6,300 mm was horizontal double pipe counterflow condenser. The refrigerants R-22, R-290 and R-410a were cooled by a coolant circulated in a surrounding annulus. Experimental range of mass velocities was changed from about 100 to 300 kg/($m^2$.s) and inlet quality 1.0 The credibility of experimental apparatus was 6 percent between heating capacity and cooling capacity added to compressor shaft power. The condensing heat transfer coefficients were increased with increasing mass velocity. However in case of R-290 they were more increasing than those of R-410a and R-22 Comparing the heat transfer coefficient between the experimental data and other's data the Cavallini-Zecchin's data was revealed to more similar prediction of author's experimental results on the average heat transfer coefficients.

  • PDF

Deformation Analysis of Impact Damaged Composite Tube Using Thermal Shearography

  • Kim, Koung-Suk;Chang, Ho-Seob;Jang, Su-Ok;Lee, Seung-Seok;Jang, Wan-Sik;Jung, Hyun-Chul
    • 비파괴검사학회지
    • /
    • 제28권3호
    • /
    • pp.302-308
    • /
    • 2008
  • Composite materials are widely used as structural materials for aerospace engineering because of its excellent mechanical properties such as light weight, high stiffness, and low thermal expansion. In driving, impact damage is one of the common but dangerous damages, caused by internal failure of the laminas interface which is not detected by in the surface. Many techniques to detect defects or delaminate between laminates have been reported. Shearography is a kind of laser speckle pattern interferometry with the advantages of non-destructive, non-contact, high resolution and displacement slope measurement. In this paper, the shearography is used to evaluate non-destructively impact damaged surface of the composite material and a measuring method using shearography for the thermal deformation of a impact damaged composite material is discussed. The basic principles of the technique are also described briefly.

발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구 (Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems)

  • 신정환;이인철;김희동;구자예
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

$Ga_2O_3$ 첨가에 따른 다성분계 glass optical fiber의 특성 (Properties of Multicomponent Glass Optical Fiber by adding $Ga_2O_3$)

  • 윤상하;강원호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.210-216
    • /
    • 1997
  • The th ermal and optical properties of multicomponent oxide glass optical fiber by adding heavy metal oxide Ga$_{2}$O$_{3}$(0-20wt%) were investigated. The fiber samples were made by the method of rod in tube. The optical loss of fiber was measured in 0.3-1.8.mu.m wavelength region. As Ga$_{2}$O$_{3}$ increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 579.deg. C and from 548.deg. C to 641.deg. C, respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1x10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64.mu.m to 6.1.mu.m. The optical loss of fiber was remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

축방향 그루브형 가변전열 히트파이프의 열제어 특성 (Analysis of Thermal Control Performance of Variable Conductance Heat Pipe with Axial Grooves)

  • 박영식;김동언;변길성;서정세;이기우;박기호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1651-1656
    • /
    • 2003
  • The present study has been conducted to analytically investigate the thermal control performance of variable conductance heat pipe(YCHP) with axial grooves. The condenser port of the YCHP is occupied by a inert gas in which the concentration of gas is varied with the operation temperature and the heat transport capacity is thus varied with the operating temperature due to the variation of inert gas concentration. In this study, numerical evaluation for the thermal control of the YCHP with axial grooves is made from the 1st order diffusion model that considers the diffusive expansion of inert gas by concentration gradient. Ammonia is used as a working fluid and Nitrogen as a control gas in the Aluminum tube. As a result, the thermal performance of YCHP based on diffusion model has been compared with that of YCHP from flat front model. Additionally, it is found that the concentration of inert gas is distributed in the condenser region of YCHP with axial grooves.

  • PDF