• Title/Summary/Keyword: expansion stress

Search Result 922, Processing Time 0.034 seconds

Effects of Wet Chemical Treatment and Thermal Cycle Conditions on the Interfacial Adhesion Energy of Cu/SiNx thin Film Interfaces (습식표면처리 및 열 사이클에 따른 Cu/SiNx 계면접착에너지 평가 및 분석)

  • Jeong, Minsu;Kim, Jeong-Kyu;Kang, Hee-Oh;Hwang, Wook-Jung;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • Effects of wet chemical treatment and thermal cycle conditions on the quantitative interfacial adhesion energy of $Cu/SiN_x$ thin film interfaces were evaluated by 4-point bending test method. The test samples were cleaned by chemical treatment after Cu chemical-mechanical polishing (CMP). The thermal cycle test between Cu and $SiN_x$ capping layer was experimented at the temperature, -45 to $175^{\circ}C$ for 250 cycles. The measured interfacial adhesion energy increased from 10.57 to $14.87J/m^2$ after surface chemical treatment. After 250 thermal cycles, the interfacial adhesion energy decreased to $5.64J/m^2$ and $7.34J/m^2$ for without chemical treatment and with chemical treatment, respectively. The delaminated interfaces were confirmed as $Cu/SiN_x$ interface by using the scanning electron microscope and energy dispersive spectroscopy. From X-ray photoelectron spectroscopy analysis results, the relative Cu oxide amounts between $SiN_x$ and Cu decreased by chemical treatment and increased after thermal cycle. The thermal stress due to the mismatch of thermal expansion coefficient during thermal cycle seemed to weaken the $Cu/SiN_x$ interface adhesion, which led to increased CuO amounts at Cu film surface.

The Study of Comparison on Rapping Force on Generation of Corona Discharge Electrode of Electrostatic Precipitator (전기집진장치의 코로나 전류 발생 전극 제작에 따른 추타력 비교에 관한 연구)

  • Lee, Kang-Wuk;Park, Jeong-Ho;Jang, Seong-Ho;Lim, Woo-Taik;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.231-238
    • /
    • 2017
  • Rapid industrial development has led to a serious problem of pollution in the industrial sector. With the increasing social need for environmental protection, research on air pollution prevention equipment for reducing pollutants in industrial processes is actively being undertaken. The deterioration of existent, installed facilities, their increased emission rates, and the strengthening of the effluent quality standards make complying with permissible emission standards difficult. In fact, installing new electric precipitators or complementing existent facilities is inevitable. The expansion and complementation of the installed electrical precipitators have led to improvements in dust collection efficiency, shorter working times, and lower costs. Because of its easy installation and simple manufacturing process, the production method with the discharge electrode of an electric precipitator is widely used. The following conclusions were reached by classifying discharge electrodes into four types based on the production method and mutually comparing them by their dust collection efficiency. None of the four types used in this study were damaged by impact. However, we were able to confirm some strain from the compression sites of both type A and type B. Both type B and type C are expected to have greater dust collection efficiencies than the other models due to their large vibration transmissibility. Moreover, the high vibrational energy is expected to cause rapping damage during its operation. Particularly, in the case of type B, some of the strain was found at the end of the compression site. The coupling schemes of both type C and type D are out of vibration transmissibility. On the other hand, the ability to maintain straightness and solidity of the side is regarded as outstanding and stable. Type D has outstanding on-site workability, considering the presence of locking, structural stability, and work conditions. From these experiments, we determined that type C is the most ideal connection method of discharge electrode, considering its construction period of renovation. Type C is inferior to type D with regard to on-site workability. However, type C has outstanding dedusting transmission with regard to the straightness, solidity maintenance, and vibration of shearing stress.

Characterization for Viscoelasticity of Glass Fiber Reinforced Epoxy Composite and Application to Thermal Warpage Analysis in Printed Circuit Board (유리섬유강화 복합재의 점탄성 특성 규명 및 인쇄회로기판 열변형해석에의 적용)

  • Song, Woo-Jin;Ku, Tae-Wan;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.245-253
    • /
    • 2010
  • The reliability problems of flip chip packages subjected to temperature change during the packaging process mainly occur due to mismatches in the coefficients of thermal expansion as well as features with time-dependent material properties. Resin molding compounds like glass fiber reinforced epoxy composites used as the dielectric layer in printed circuit boards (PCB) strongly exhibit viscoelastic behavior, which causes their Young's moduli to not only be temperature-dependent but also time-dependent. In this study, the stress relaxation and creep tests were used to characterize the viscoelastic properties of the glass fiber reinforced epoxy composite. Using the viscoelastic properties, finite element analysis (FEA) was employed to simulate thermal loading in the pre-baking process and predict thermal warpage. Furthermore, the effect of viscoelastic features for the major polymeric material on the dielectric layer in the PCB (the glass fiber reinforced epoxy composite) was investigated using FEA.

Source Location on Full-Scale Wind Turbine Blade Using Acoustic Emission Energy Based Signal Mapping Method (음향방출 에너지 기반 신호 맵핑 기법을 이용한 실물 풍력 블레이드 손상 검출)

  • Han, Byeong-Hee;Yoon, Dong-Jin;Huh, Yong-Hak;Lee, Young-Shin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2013
  • Acoustic emission(AE) has emerged as a powerful nondestructive tool to detect any further growth or expansion of preexisting defects or to characterize failure mechanisms. Recently, this kind of technique, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind turbine blade. In this study, the activities of AE signals generated from external artificial sources was evaluated and located by new developed signal mapping source location method and this test is conducted by 750 kW full-scale blade. And a new source location method was applied to assess the damage in the wind turbine blade during step-by-step static load test. In this static loading test, we have used a full scale blade of 100 kW in capacity. The results show that the acoustic emission activities give a good agreement with the stress distribution and damage location in the blade. Finally, the applicability of the new source location method was confirmed by comparison of the result of source location and experimental damage location.

The Shape and the Location of Forehead Hairline of Korean Males in Their 20s & 30s (20, 30대 한국 남성의 전두부 모발선의 모양과 위치)

  • Yoon, Sung-Won;Kim, Chung-Hun
    • Archives of Plastic Surgery
    • /
    • v.38 no.3
    • /
    • pp.295-299
    • /
    • 2011
  • Purpose: It is generally believed that alopecia is caused by various factors such as scars, stress, genetical factors, androgens, etc. Androgenic alopecia is one of the most common cause of alopecia and found mainly in males. Propecia (Merck & Co., USA) and Minoxidil (McNEIL-PPC, Inc, USA) were the drugs approved from FDA for treatment of androgenic alopecia. Surgical treatments such as flap, tissue expansion, scalp reduction and hair transplantation can be considered if necessary. Hair micrograft techniques were developed for natural hair shapes and minimal adverse effect. There were attempts to measure the length of the forehead of the Korean young adults. However attempts to classify the shape and location of forehead hairline were rare. This study attempted to find out standard hairlines of young adults in their 20s & 30s and the result would be the guideline of the hairline in hair replacement surgery of male patients in their 40s & 50s. Methods: 200 male adults in 20s and 30s were photographed and measured the length of 11 vertical index lines to determine hairline. The indexes are the distances from hairline to intercanthal midpoint (A), to medial canthus (B), to upper eyelid fissure (C), to lower eyelid fissure (D), to lateral canthus (E) and distance from lateral highest point to medial lowest point, if the hairline is M-shape (F). Additionally, we classified the hairlines into 4 groups, M, horizontal, inverted U and irregular shapes. Results: The most common hairline of male adults in their 20s is inverted U-shape (53.3%), followed by horizontal-shape, M-shape, irregular-shape. In their 30s, inverted U-shape (59%) is followed by irregular-shape, M-shape, horizontal-shape. The M-shape is more frequently found in males in 30s than those in 20s. The mean values of the indexes in their 20s are as follows: A (76.14 mm), B (Rt: 75.78 mm, Lt:76.41 mm), C (Rt: 69.43 mm, Lt: 69.92 mm), D (Rt: 76.92 mm, Lt:77.46 mm), E (Rt: 64.16 mm, Lt: 64.73 mm), F (4.09 mm). Those in their 30s are as follows: A (76.13 mm), B (Rt: 76.114 mm, Lt: 76.02 mm), C (Rt: 69.87 mm, Lt: 70.37 mm), D (Rt: 77.37 mm, Lt: 77.58 mm), E (Rt: 69.63 mm, Lt: 69.85 mm), F (6.14 mm). Conclusion: The knowledge about human body measurement is indispensable to plastic surgeons. In this study, inverted U shape is the most common type of hairline in 30s, and similar distribution is found in 20s. The percentage of M shape in their 30s is elevated more than 10% compared to that in their 20s. The study of hairline shapes and 11 indexes of hairlines can be useful for planning of the hair transplantation and postoperative evaluation. This study being based on photogrammetry, there may be differences between actual distance of curved face and projected distance on flat photographs.

Study for Characteristic of Frictional Heat Transfer in Rotating Brake System (회전을 고려한 브레이크 디스크의 마찰열전달 연구)

  • Nam, Jiwoo;Ryou, Hong Sun;Cho, Seong Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.817-822
    • /
    • 2017
  • The braking system is one of the most important components in vehicles and machines. It must exert a reliable braking force when they are brought to a halt. Generally, frictional heat is generated by converting kinetic energy into heat energy through friction. As the kinetic energy is converted into heat energy, high temperature heat is generated which affects the mechanical behavior of the braking system. Frictional heat affects the thermal expansion and friction coefficient of the brake system. If the temperature is not controlled, the brake performance will be decreased. Therefore, it is important to predict and control the heat generation of the brake. Various numerical analysis studies have been carried out to predict the frictional heat, but they assumed the existence of boundary conditions in the numerical analysis to simulate the frictional heat, because the simulation of frictional heat is difficult and time consuming. The results were based on the assumption that the frictional heat is different from the actual temperature distribution in a rotating brake system. Therefore, the reliability of the cooling effect or thermal stress using the results of these studies is insufficient. In order to overcome these limitations and establish a simulation procedure to predict the frictional heat, this study directly simulates the frictional heat generation by using a thermal-structure coupling element. In this study, we analyzed the thermo-mechanical behavior of a brake model, in order to investigate the thermal characteristics of brake systems by using the Finite Element method (FEM). This study suggests the necessity to directly simulate the frictional heating and it is hoped that it can provide the necessary information for simulations.

Actual Condition of Teenagers' Computer Game Addiction and It's Influence on their Personality (청소년의 컴퓨터 게임 중독 실태와 인성에 미치는 영향)

  • Ahn, Seong-Hun;Jang, IL-Young
    • Journal of The Korean Association of Information Education
    • /
    • v.11 no.4
    • /
    • pp.447-459
    • /
    • 2007
  • Recently, the use of computer game by Korean teenagers is rapidly growing due to the expansion of the computer popularization and the development of game industry. Of all the teenagers, 82.4% have experience of playing computer game and statistics shows that 22.4% of them play everyday. There is an opinion that the computer game not only improves self confidence and concentration but also enhances internet use, foreign language usage and cognitive ability so that it accelerates learning efficacy and releases stress. On the other hand, there also exists a negative opinion on the symptoms of its addiction. Young(1996) warns that like other addictions, computer game addiction can provoke social problems such as loss of control, desire, marriage problem, schoolwork failure, financial deficiency and loss of employment. Therefore, this study has investigated how computer game addiction affects teenagers' personality. For this purpose, I have conducted the research on the reality of teenagers'computer game use, computer game addiction assessment, analysis on the difference between male and female, and on the relation between the level of computer game addiction and teenagers' personality. As a result, it is confirmed that the computer game addiction affects negatively to teenagers' personality such as stability, self-controlling, perceiving emotion, expressing emotion and controlling emotion.

  • PDF

Structural and optical properties of Si nanowires grown by Au-Si island-catalyzed chemical vapor deposition (Au-Si 나노점을 촉매로 성장한 Si 나노선의 구조 및 광학적 특성 연구)

  • Lee, Y.H.;Kwak, D.W.;Yang, W.C.;Cho, H.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.51-57
    • /
    • 2008
  • we have demonstrated structural evolution and optical properties of Si-nanowires (NWs) synthesized on Si (111) substrates with nanoscale Au-Si islands by rapid thermal chemical vapor deposition (RTCVD). The Au-Si nano-islands (10-50nm in diameter) were employed as a liquid-droplet catalysis to grow Si-NWs via vapor-liquid-solid mechanism. The Si-NWs were grown by a mixture gas of SiH4 and H2 at a pressure of 1.0 Torr and temperatures of $500{\sim}600^{\circ}C$. Scanning electron microscopy measurements showed that the Si-NWs are uniformly sized and vertically well-aligned along <111> direction on Si (111) surfaces. The resulting NWs are ${\sim}60nm$ in average diameter and ${\sim}5um$ in average length. High resolution transmission microscopy measurements indicated that the NWs are single crystals covered with amorphous SiOx layers of ${\sim}3nm$ thickness. In addition, the optical properties of the NWs were investigated by micro-Raman spectroscopy. The downshift and asymmetric broadening of the Si main optical phonon peak were observed in Raman spectra of Si-NWs, which indicates a minute stress effects on Raman spectra due to a slight lattice distortion led by lattice expansion of Si-NW structures.

Microstructural Characteristics of III-Nitride Layers Grown on Si(110) Substrate by Molecular Beam Epitaxy

  • Kim, Young Heon;Ahn, Sang Jung;Noh, Young-Kyun;Oh, Jae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.327.1-327.1
    • /
    • 2014
  • Nitrides-on-silicon structures are considered to be an excellent candidate for unique design architectures and creating devices for high-power applications. Therefore, a lot of effort has been concentrating on growing high-quality III-nitrides on Si substrates, mostly Si(111) and Si(001) substrates. However, there are several fundamental problems in the growth of nitride compound semiconductors on silicon. First, the large difference in lattice constants and thermal expansion coefficients will lead to misfit dislocation and stress in the epitaxial films. Second, the growth of polar compounds on a non-polar substrate can lead to antiphase domains or other defective structures. Even though the lattice mismatches are reached to 16.9 % to GaN and 19 % to AlN and a number of dislocations are originated, Si(111) has been selected as the substrate for the epitaxial growth of nitrides because it is always favored due to its three-fold symmetry at the surface, which gives a good rotational matching for the six-fold symmetry of the wurtzite structure of nitrides. Also, Si(001) has been used for the growth of nitrides due to a possible integration of nitride devices with silicon technology despite a four-fold symmetry and a surface reconstruction. Moreover, Si(110), one of surface orientations used in the silicon technology, begins to attract attention as a substrate for the epitaxial growth of nitrides due to an interesting interface structure. In this system, the close lattice match along the [-1100]AlN/[001]Si direction promotes the faster growth along a particular crystal orientation. However, there are insufficient until now on the studies for the growth of nitride compound semiconductors on Si(110) substrate from a microstructural point of view. In this work, the microstructural properties of nitride thin layers grown on Si(110) have been characterized using various TEM techniques. The main purpose of this study was to understand the atomic structure and the strain behavior of III-nitrides grown on Si(110) substrate by molecular beam epitaxy (MBE). Insight gained at the microscopic level regarding how thin layer grows at the interface is essential for the growth of high quality thin films for various applications.

  • PDF

Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate (초경합금에 나노결정질 다이아몬드 코팅 시 금속 중간층의 효과)

  • Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of Surface Science and Engineering
    • /
    • v.46 no.2
    • /
    • pp.68-74
    • /
    • 2013
  • For the coating of diamond films on WC-Co tools, a buffer interlayer is needed because Co catalyzes diamond into graphite. W and Ti were chosen as candidate interlayer materials to prevent the diffusion of Co during diamond deposition. W or Ti interlayer of $1{\mu}m$ thickness was deposited on WC-Co substrate under Ar in a DC magnetron sputter. After seeding treatment of the interlayer-deposited specimens in an ultrasonic bath containing nanometer diamond powders, $2{\mu}m$ thick nanocrystalline diamond (NCD) films were deposited at $600^{\circ}C$ over the metal layers in a 2.45 GHz microwave plasma CVD system. The cross-sectional morphology of films was observed by FESEM. X-ray diffraction and visual Raman spectroscopy were used to confirm the NCD crystal structure. Micro hardness was measured by nano-indenter. The coefficient of friction (COF) was measured by tribology test using ball on disk method. After tribology test, wear tracks were examined by optical microscope and alpha step profiler. Rockwell C indentation test was performed to characterize the adhesion between films and substrate. Ti and W were found good interlayer materials to act as Co diffusion barriers and diamond nucleation layers. The COFs on NCD films with W or Ti interlayer were measured as less than 0.1 whereas that on bare WC-Co was 0.6~1.0. However, W interlayer exhibited better results than Ti in terms of the adhesion to WC-Co substrate and to NCD film. This result is believed to be due to smaller difference in the coefficients of thermal expansion of the related films in the case of W interlayer than Ti one. By varying the thickness of W interlayer as 1, 2, and $4{\mu}m$ with a fixed $2{\mu}m$ thick NCD film, no difference in COF and wear behavior but a significant change in adhesion was observed. It was shown that the thicker the interlayer, the stronger the adhesion. It is suggested that thicker W interlayer is more effective in relieving the residual stress of NCD film during cooling after deposition and results in stronger adhesion.