• Title/Summary/Keyword: expansion stress

Search Result 922, Processing Time 0.034 seconds

Characteristics of Stress-Strain Behavior for Lade's Single Work-Hardening Constitutive Model with Stress Path of Sands (모래의 응력경로에 따른 Lade의 단일항복면 구성모델의 응력-변형거동 특성)

  • Kim, Chan-Kee;Lee, Jong-Cheon;Cho, Won-Beom;Park, Wook-Geun;Kim, Hwan-Wook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.2
    • /
    • pp.1-9
    • /
    • 2012
  • In order to review the utility of Lade's single hardening constitutive model, a series of isotropic compression-expansion tests and consolidated drained triaxial tests including as CTC, TC, RTC, and OSP were performed by Baekma river sand with various of stress path. Parameters required in model were determined using these tests. The accuracy of analysis was reviewed by back analysis of test results used to determine the 11 parameters of soil property through the test of each stress path. Also. for verifying the accuracy of prediction for the stress-strain behavior using failure criterion related 9 parameters with correlational equation and constant and yield criterion related parameters h, ${\alpha}$ and ${\eta}_1$, when stress path is different with each other, it has been obtained in the review result of stress path dependent characteristics of the constitutional model through the analyzing results of CTC, TC, RTC, OSP, and fine silica sand tests.

Development of the computer program calculating the stress induced by various loads for buried natural gas pipeline ( I ) (매설 천연가스 배관의 제반하중에 의한 응력 계산용 프로그램 개발 (I))

  • Bang I.W.;Kim H.S.;Kim W.S.;Yang Y.C.;Oh K.W.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.18-25
    • /
    • 1998
  • According to the requirements of ANSI B3l.8, the pipe thickness is determined with hoop stress resulted from internal pressure. And the other loads induced by soil, vehicle, thermal expansion, ground subsidence, etc shall be evaluated rationally. There are two ways of calculating stress of buried gas pipeline. The first is FEM. FEM can calculate the stress regardless of the complexity of pipeline shape and boundary conditions. But it needs high cost and long time. The second is the way to use equation. The reliable equations to calculate the stress of buried gas pipeline was developed and have been used in designing pipeline and evaluating pipeline safety, But these equation are very difficult to understand and use for non-specialist. For easy calculation of non-specialist, the new computer program to calculate stress of buried natural gas pipeline have been developed. The stress is calculated by the equations and extrapolation of the graph resulted from FEM. The full paper is consist of series I and II. In this paper, series I, the calculating equation of the program is explained in detail.

  • PDF

Expression of NAC transcription factor is altered under intermittent drought stress and re-watered conditions in Hevea brasiliensis

  • Luke, Lisha P.;Sathik, M.B. Mohamed;Thomas, Molly;Kuruvilla, Linu;Sumesh, K.V.
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.142-148
    • /
    • 2017
  • Drought stress is one of the important factors that restrict the expansion of Hevea brasiliensis cultivation to non-traditional regions experiencing extreme weather conditions. Plants respond to drought stress by triggering expression of several drought responsive genes including transcription factors which in turn trigger expression of various downstream signalling pathways and adaptive networks. Expression of such drought responsive genes may revert back to their original level upon re-watering. However, no reports are available on such phenomenon in Hevea and hence, this study was initiated. For this purpose, NAC transcription factor (NAC tf) was chosen as candidate gene. Its expression levels were monitored under intermittent drought as well as irrigated conditions in two clones (RRII 105 and RRIM 600) of H. brasiliensis with contrasting tolerance level. Copy number of NAC tf was found similar in both the clones. Expression of NAC tf was found highly up-regulated in RRIM 600 (a relatively drought tolerant clone) than in RRII 105 (a relatively drought susceptible clone) throughout the drought incidences which upon re-watering, reached back to its original levels in both the clones. The study indicated the existence of an association between expression of NAC tf and drought tolerance trait exhibited by the tolerant clone RRIM 600. The study also proves the influence of drought and re-watering on the leaf photosynthesis and expression of NAC tf in H. brasiliensis.

The Convergence Study of Interpersonal Caring Behaviors on Anger, Job Stress and Social Support in Nurses (간호사의 분노, 직무스트레스, 사회적 지지에 대한 대인돌봄행위의 융합적 연구)

  • Han, Jin-Ah;Kim, Mi-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.3
    • /
    • pp.87-98
    • /
    • 2016
  • This study comprised descriptive research into nurses' anger, job stress and social support, and the impact thereof on interpersonal caring behaviors. This study focused on the anger and interpersonal caring behaviors of nurses. From December $1^{st}$ to $31^{st}$ 2014, the data of 174 working at university hospitals in four cities were collected. This study focused on the anger and interpersonal caring behaviors of nurses. Repeated anger rumination reduced interpersonal caring behaviors. The influence of anger-in and anger-control on interpersonal caring behaviors was confirmed. Although the stress score of job demand was too high, an autonomous nursing environment, material support and expansion of the educational period are required to enhance interpersonal caring behaviors. Thus, this study investigated the elements of interpersonal caring behavior necessary for nursing care and suggests the necessity on convergence study of addressing feelings of anger as an emotion management intervention.

A Study on the Cracking Control Effects of Shrinkage Reduction Concrete (수축보상형 콘크리트의 균열억제 효과에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Gyu-Yong;Noguchi, Takafumi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.569-577
    • /
    • 2015
  • The aim of this study is to qualitatively evaluate the cracking control effects of expansive concrete used in reinforced concrete building. The result of experiments in laboratory shows that autogenous shrinkage and drying shrinkage are suppressed by using expansive additive. The tensile stress-strength ratio is lower in expansive concrete than normal concrete under fully restrained condition. Compression stress could be effectively generated in early age in the walls in buildings by the use of expansive additive, and tensile stress due to drying shrinkage at later age eventually decreased. Additionally, visual observation at long-term ages shows that the cracking area of expansive concrete was approximately 35% of normal concrete, which confirms that the use of expansive additive reduces concrete cracking in reinforced concrete buildings.

Experimental Study on the Physical and Mechanical Properties of a Copper Alloy for Liquid Rocket Combustion Chamber Application (액체로켓 연소기용 구리합금의 열/기계적 특성에 관한 실험적 연구)

  • Ryu, Chul-Sung;Baek, Un-Bong;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.11 s.254
    • /
    • pp.1494-1501
    • /
    • 2006
  • Mechanical and physical properties of a copper alloy for a liquid rocket engine(LRE) combustion chamber liner application were tested at various temperatures. All test specimens were heat treated with the condition they might experience during actual fabrication process of the LRE combustion chamber. Physical properties measured include thermal conductivity, specific heat and thermal expansion data. Uniaxial tension tests were preformed to get mechanical properties at several temperatures ranging from room temperature to 600$^{\circ}C$. The result demonstrated that yield stress and ultimate tensile stress of the copper alloy decreases considerably and strain hardening increases as the result of the heat treatment. Since the LRE combustion chamber operates at higher temperature over 400$^{\circ}C$, the copper alloy can exhibit time-dependent behavior. Strain rate, creep and stress relaxation tests were performed to check the time-dependent behavior of the copper alloy. Strain rate tests revealed that strain rate effect is negligible up to 400$^{\circ}C$ while stress-strain curve is changed at 500$^{\circ}C$ as the strain rate is changed. Creep tests were conducted at 250$^{\circ}C$ and 500$^{\circ}C$ and the secondary creep rate was found to be very small at both temperatures implying that creep effect is negligible for the combustion chamber liner because its operating time is quite short.

Interfacial Properties and Residual Stress of Carbon Fiber/Epoxy-AT PEI Composite with Matrix Fracture Toughness using Microdroplet Test and Electrical Resistance Measurements (Microdroplet 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 수지파괴인성에 따른 잔류응력 및 계면물성)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Interfacial and electrical properties for the carbon fiber reinforced epoxy-amine terminated (AT) PEI composites were performed using microdroplet test and electrical resistance measurements. As AT PEI content increased, the fracture toughness of epoxy-AT PEI matrix increased, and IFSS was improved due to the improved toughness and energy absorption mechanisms of AT PEI. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 wt% AT PEI content, ductile microfailure mode appeared because of improved fracture toughness. After curing, the changes of electrical resistance (ΔR) with increasing AT PEI content increased gradually because of thermal shrinkage. The matrix fracture toughness was correlated to IFSS, TEC and electrical resistance. In cyclic strain test, the maximum stress and their slope of the neat epoxy case were higher than those of 15 wt% AT PEI. The results obtained from electrical resistance measurements under curing process and reversible stress and strain were consistent well with matrix toughness properties.

  • PDF

Characteristics of inorganic nutrient absorption of potato (Solanum tuberosum L.) plants grown under drought condition

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung;Lee, Yonggyu;Kim, Juil;Ji, Samnyeo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.181-181
    • /
    • 2017
  • Global warming and climate change have been one of the most important problems last 2 decades. Global warming is known to cause abnormal climate and influence ecology, food production and human health. According to climate change model global warming is causing expansion of drought and increase of evaporation. Therefore, securing water in agriculture has been an important issue for crop cultivation. As potato is susceptible to drought, water shortage generally results in decrease of yield and decrease of biomass. In this research, we investigated characteristics of inorganic nutrient absorption and growth of plants grown under drought condition. Plants were sampled in sites of Cheong-ju and Gangneung, where the severity of drought stress were different. During the growth period in Gangneung, total rainfall in 2016 decreased by 50% compared with those in last 5 years average. Especially, there was almost no rain in tuber enlargement period (from mid-May to mid-June). On the other hand, the total rainfall in of Cheong-ju was is similar to those in last 5 years average. Inorganic components including K, Ca and Mg and plant growth factors such as plant length, stem length, leaf area index and plant biomass were investigated. Tuber yields in both areas were investigated at harvest. Growth period of plants was is longer in Cheong-ju than that in Gangneung. Contents of all inorganic components were higher in plants grown in Cheong-ju than in Gangneung. The results were attributed to higher production of plant biomass in Cheong-ju. Considering the results, severe drought stress conditions in Gangneung accelerated plant aging and resulted in low plant growth. Although total yield was greatly reduced under drought stress the rate of commercial yield was is not significantly different with non-drought conditions.

  • PDF

Influence of Tax Officials' Occupational Stress on Job Satisfaction and Psychological Well-being (세무공무원이 경험하는 직무스트레스가 직무만족과 심리적 웰빙에 미치는 영향)

  • Hong, Soon-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.298-305
    • /
    • 2010
  • The purpose of this study is to analyze the relationship among the factors of tax officials' occupational stress, job satisfaction and psychological well-being. It also aims to provide the effective management ways of tax officials' job. The result of the study showed that the factors of their occupational stress in performing their duties had negative effects on their job satisfaction, the higher their job satisfaction degree was, the higher their psychological well-being was and it could improve the efficiency of the tax administration performance. It also had the positive effects to improve tax payers' satisfaction degree of taxation service. Therefore, the welfare expansion considering the tax officials' roles and importance, wage supplement from provincial governments and institutionalized supplement to improve their job satisfaction are needed for the increase of the efficiency of taxation service.

Evaluation of Residual Stress for Thermal Damage of Railway Wheel Tread (차륜 답면의 열손상에 대한 잔류응력 평가)

  • Kwon, Seok-Jin;Seo, Jung-Won;Lee, Dong-Hyung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.537-542
    • /
    • 2011
  • The thermo-mechanical interaction between brake block and wheel tread during braking has been found to cause thermal crack on the wheel tread. Due to thermal expansion of the rim material, the thermal cracks will protrude from the wheel tread and be more exposed to wear during the wheel/block contact than the rest of the tread surface. The wheel rim is in residual compression stress when is new. After service running, the region in the tread has reversed to tension. This condition can lead to the formation and growth of thermal cracks in the rim which can ultimately lead to premature failure of wheel. In the present paper, the thermal cracks of railway wheel, one of severe damages on the wheel tread, were evaluated to understand the safety of railway wheel in running condition. The residual stresses for damaged wheel which are applied to tread brake are investigated. Mainly X-ray diffusion method is used. Under the condition of concurrent loading of continuous rolling contact with rails and cyclic frictional heat from brake blocks, the reduction of residual stress is found to correlate well with the thermal crack initiation.