• 제목/요약/키워드: expansion material

검색결과 1,216건 처리시간 0.026초

열가소성 재활용수지를 건축용 단층방수시스템에 활용하기 위한 인장 및 신장 특성 분석 연구 (Tension Strength and Expansion Property Analysis Research to Utillize Thermoplasticity Recycling Plastic to Single Play Waterproof System for Construction)

  • 박성우;고진수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.89-94
    • /
    • 2011
  • In this research, among thermoplasticity plastic raw material that recycling is possible polyolefine(TPO) and polyvinyl chloride(PVC) as target recycling plan examine wish to. It is polyolefine(TPO) and polyvinyl chloride(PVC)) is mediocrity material that there are a lot of amount useds among plastic material and it is material that recycling is also activated most. Long term made first new regulation raw material, by-product raw material happened at process of production at second factory and third time to examine recycling plan of this material divides this as raw material that pass through process separation and pelet Tuesday and analyzed each special quality removing each removed waste after is used. Measure tension strength and ext. heightening gradually mixing proportion of refreshing resources on standard Sample manufactured as new raw material and application examined possibility availability to single fly system.

  • PDF

Thermomechanical Properties of Carbon Fibres and Graphite Powder Reinforced Asbestos Free Brake Pad Composite Material

  • Thiyagarajan, P.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.117-120
    • /
    • 2003
  • Asbestos is being replaced throughout the world among friction materials because of its carcinogenic nature. This has raised an important issue of heat dissipation in the non-asbestos brake pad materials being developed for automobiles etc. It has been found that two of the components i.e. carbon fibres as reinforcement and graphite powder as friction modifier, in the brake pad material, can playa vital role in this direction. The study reports the influence of these modifications on the thermal properties like coefficient of thermal expansion (CTE) and thermal conductivity along with the mechanical properties of nonasbestos brake pad composite samples developed in the laboratory.

  • PDF

균질화기법을 이용한 복합재료의 등가 열전도계수의 계산 (Determination of Equivalent Thermal Conductivities of Composite Materials Using Homogenization Technique)

  • 이진희;이봉래
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1245-1252
    • /
    • 1994
  • A solution of heat transfer problems of composite materials has been tried using homogenization technique. Homogenization technique, which was derived by applying asymptotic expansion to the standard finite element method, helped compute the equivalent thermal conductivity matrices of base cells which constituted the composite material with repeated patterns. The homogenization technique made it possible to compute the solution of the heat transfer problem of composite materials with lower degrees of freedom compared to those of other numerical methods. The equivalent thermal conductivities computed by computed by homogenization technique are also applicable to other numerical methods such as finite difference method.

이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구 (A Study on Reliability of Solder Joint in Different Electronic Materials)

  • 신영의;김경섭;김형호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1993년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

Effects of Design Parameters on Performance of the Stirling Refrigerator

  • Hong, Yon-Ju;Park, Seong-Je;Kim, Hyo-Bong;Park, Young-Don
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권2호
    • /
    • pp.35-39
    • /
    • 2004
  • The split-type free displacer Stirling refrigerators have been widely used for the cooling of infrared sensors and HTS filters. The thermodynamic and electric performance of the Stirling refrigerator is depending on the design and operating parameters. In the Stirling refrigerator with a free displacer, the refrigeration power is a function of the pressure wave in the expansion space, dynamics of a displacer, driving frequency, and etc.. In this study, the analysis of the small Stirling refrigerator was performed to investigate the effects of design parameters on the cooling capacity. The results show the effects of charging pressure, driving frequency, cold end temperature, natural frequency of a displacer and volume of expansion space on the performance of the Stirling refrigerator.

Ni/CGO Cermet Anode의 특성 최적화 (Property Optimization of Ni/CGO Cermet Anodes)

  • 최종혁;김남진;이덕열
    • 한국전기전자재료학회논문지
    • /
    • 제12권1호
    • /
    • pp.94-102
    • /
    • 1999
  • Ni/CGO cermets were fabricated as the anode for SOFC which uses CGO as the electrolyte. And their electrical conductivity, electrochemical reactivity, and thermal expansion coefficient were optimized through the variation of NiO/CGO particle size ration and their composition. The electrical conductivity of the cermet was increased abruptly at a certain Ni content and the percolation concentration was decreased with the decreasing particle size ratio. Anodic overpotential was also decreased with the decreasing particle size ratio. For a fixed ratio it showed a minimum value at 50 wt.%. Thermal expansion coefficient was increased monotonically with increasing Ni contents, however it did not depend on the size ratio. With three properties taken into account, the cermet of particle size ration of 0.03 and composition of 50 wt.% was judged to be optimal as the anode.

  • PDF

Effect of Nano-silicate on the Mechanical, Electrical and Thermal Properties of Epoxy/Micro-silica Composite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권3호
    • /
    • pp.153-156
    • /
    • 2012
  • In order to develop electrical insulation materials, epoxy/micro-silica composite (EMC) and epoxy/micro-silica/nano-silicate composite (EMNC) were prepared, and their tensile and flexural strength, AC insulation breakdown strength and thermal conductivity and thermal expansion coefficient were compared. Nano-silicate was prepared in an epoxy matrix by our AC electric field process. All properties of the neat epoxy were improved by the addition of micro-silica, which was improved much further by the addition of nano-silicate to the EMC system.

케이블 관통부의 유기 팽창물을 이용한 밀폐재 내화성 특성 평가 (The Characteristic Evaluation of Fire-Resistance test by Cable Transit For Organic Expansion Sealing material)

  • 임성식;기명석;정혁;소병기;장기훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.198-199
    • /
    • 2007
  • The Cable Transit has an adaptable center hole for accommodating a cable to be passed through the wall(bulkhead/deck). The Cable Transits Sealing System must have important character which seal and protect against fire, smoke, gas, water, etc and consist of natal frame, sealing system and the cable, insulation. In this paper, introduced our cable transit organic expansion sealing material system, fire-resistance test and test result, etc. We carry to fire-resistance test in according to FTP Code Part 3(IMO Res. A. 754(18)) for A-60 class cable transit and the test result for our cable transit sealing system was satisfied.

  • PDF

THE DEVELOPMENT OF FOAMING AGENTS USING SLES & DH-109EX

  • Hu Rui;Kim, Jeong-Hun;Kim, Min-Kyn;Kang, Young-Goo;Kim, Hong
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1997년도 International Symposium on Fire Science and Technology
    • /
    • pp.582-589
    • /
    • 1997
  • Experiments were conducted to develop foaming agents by using SLES and DH-l09EX as raw material. PG (Propylene glycol) and BC (Butyl cellusolve) were adopted as subsidiary material. The undiluted foam solution was produced with these materials. This solution determined the expansion ratio, viscosity, drainage time and extinguishing ability of the final product. The results indicate that the expansion ratio is over 16 and drainage time is over one minute. The extinguishing ability for SLES system was succeeded in the unit of B-0.5.

  • PDF

중공 유리 마이크로스피어 혼입 시멘트 복합체의 내열충격성 향상에 대한 실험적 연구 (Experimental Study on Improving Thermal Shock Resistance of Cement Composite Incorporating Hollow Glass Microspheres)

  • 최요민;신현규
    • 한국분말재료학회지
    • /
    • 제29권6호
    • /
    • pp.505-510
    • /
    • 2022
  • The thermal shock resistance of cement composites with hollow glass microspheres (HGM) is investigated. Cement composites containing various concentrations of HGM are prepared and their properties studied. The density, thermal conductivity, and coefficient of thermal expansion of the composites decrease with increasing HGM concentration. A thermal shock test is performed by cycling between -60 and 50℃. After the thermal shock test, the compressive strength of the cement composite without HGM decreases by 28.4%, whereas the compressive strength of the cement composite with 30 wt% HGM decreases by 5.7%. This confirms that the thermal shock resistance of cement is improved by the incorporation of HGM. This effect is attributed to the reduction of the thermal conductivity and coefficient of thermal expansion of the cement composite because of the incorporation of HGM, thereby reducing the occurrence of defects due to external temperature changes.