• Title/Summary/Keyword: expansion behavior

Search Result 862, Processing Time 0.048 seconds

Expansion behavior of concrete containing different steel slag aggregate sizes under heat curing

  • Shu, Chun-Ya;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.487-502
    • /
    • 2015
  • This study investigated particle expansion in basic oxygen furnace slag (BOF) and desulfurization slag (DSS) after heat curing by using the volume method. Concrete hydration was accelerated by heat curing. The compressive strength, ultrasonic pulse velocity, and resistivity of the concrete were analyzed. Maximum expansion occurred in the BOF and DSS samples containing 0.30-0.60 mm and 0.60-1.18 mm particles, respectively. Deterioration was more severe in the BOF samples. In the slag aggregates for the complete replacement of fine aggregate, severe fractures occurred in both the BOF and DSS samples. Scanning electron microscopy revealed excess CH after curing, which caused peripheral hydration products to become extruded, resulting in fracture.

Analysis of Excluded Volume Effect in Theta Solvent Systems of Polymethyl Methacrylate and Polystyrene by Means of a Modified Scaled Temperature Parameter

  • Kim, Myeong Ju;Park, Il Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.11
    • /
    • pp.1255-1260
    • /
    • 2001
  • The expansion of two different kinds of hydrodynamic size of polymethyl methacrylate (PMMA Mw: 1.56- 2.04 ${\times}$ 106 g/mol) has been measured by dynamic light scattering and viscometry above the Flory $\theta$ temperature of the variou s solvents such as n-butyl chloride, 3-heptanone, and 4-heptanone. The expansion of PMMA chains was analyzed in terms of universal temperature parameters and also compared with previous results of polystyrene (PS) system. First it was found that simple $\tau/{\tau}c$ parameter no longer had its universality for the expansion behavior of hydrodynamic size in the chemically different linear polymer chains. However after modifying ${\tau}/{\tau}c$ parameter into $(Mw/Ro2)3}2(\tau/\tauc)$, we observed a much better universality for both PMMA and PS systems. Here Mw, Ro, $\tau[=(T-{\theta}$)/${\theta}$]$, and ${\tau}c[=({\theta}-Tc)/Tc]$ are defined as the weight average molecular weight, the unperturbed end-to-end distance, the reduced temperature and the reduced critical temperature, respectively.

The Effect of the Tied Sleeper on the Maintenance Work in the Rail Expansion Joint Zone (레일신축 이음부 유지보수 작업에 대한 침목결속의 영향)

  • Bae, Hyun-Ung;Kang, Tae-Ku;Choi, Jin-Yu;Jeong, Won-Ik;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2125-2128
    • /
    • 2011
  • The continuous welded rail(CWR) track without the rail expansion joint has many advantages over the conventional track in a variety of fields including the speed-up and the ride comport. However, due to the excessive axial force in the CWR and the track-bridge interactive behavior, inevitably, the rail expansion joint must be installed at the vulnerable zone such as the bridge end zone, etc. In this rail expansion joint zone, the frequency of the maintenance work to repair the track irregularity is on the rise. This is because that the creep of the sleeper is occurred in the moveable zone of the rail expansion joint. In this study, among the several options for reducing the track irregularity on the rail expansion joint zone, the application and efficiency of the tied sleeper is investigated. Field test construction has been conducted, then the progress of the track irregularity and the frequency of the maintenance work are analyzed before and after the filed test construction.

  • PDF

Finite Element Analysis of the Residual Stress by Cold Expansion Method under the Influence of Adjacent Holes (인접 홀의 영향을 받는 홀 확장 잔류응력의 유한요소해석)

  • Kim, Cheol;Yang, Won Ho;Seok, Chang Seong;Kim, Dae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.79-84
    • /
    • 2003
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. Despite its importance to aerospace industries, little attention has been devoted to the accurate modeling of the process. This study is devoted to the modeling and simulation of the residual stress resulting from the cold expansion of two adjacent fastener holes. Simultaneous cold expansion of two adjacent holes lead to much higher compressive residual stress than sequential cold expansion.

Finite Element Analysis of Stent Expansion Considering Stent-Balloon Interaction (스텐트와 풍선의 상호작용을 고려한 스텐트 팽창의 유한요소해석)

  • Oh Byung-Ki;Cho Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.156-162
    • /
    • 2005
  • Stouts are frequently used throughout the human body, but the most critical areas are in coronary arteries. They open pathways in vessels and supply blood directly to the heart muscle. To simulate behavior of expansion for the coronary stent by balloon, the commercial finite element code LS-DYNA and ANSYS were used in the analysis. The explicit method is used to analyze the expansion of the stent and the implicit method is performed to simulate the springback that developed in a stent after the balloon pressure has been removed. Finally the experimental results for the expansion of the PS153 stents were compared with the FEM results. The springback was measured with the stents subjected to no external pressure to which stents are subjected in vivo. The simulated results were in good agreement with experimental results. Standard mechanical characteristics such as stress, plastic strains, and springback can be derived from the numerical results. These data can be used to determine maximum expansion diameter without fracture and expansion pressure considering elastic recoil.

The Static Behavior of Bridge Expansion Joints Due to the Wheel Load (윤하중 재하에 의한 교량 신축이음의 정적거동)

  • Kim, Youngjin;Kwak, Imjong;Cho, Changbaek;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.357-366
    • /
    • 2008
  • This study addresses the analysis of the behavioral characteristics of bridge expansion joints under wheel loading through wheel load test and the proposal of relevant wheel load specifications for expansion joints. To that goal, specimens of rail and finger expansion joints that are widely used in Korea were fabricated and subjected to static wheel load test using a real tire wheel. The wheel load distribution factor in the rail and finger expansion joints in contact with the wheel load was evaluated. The evaluation revealed that the portion of load sustained by the central rail of rail expansion joint was decreasing with larger wheel load, and that the portion of load sustained by the finger expansion joint was practically insensitive to the increase of the contact area and remained nearly constant. Since the wheel load characteristics showed large difference compared to former design specifications, it appears necessary to prepare rational specifications relative to the distribution of the wheel load contact pressure for the design of expansion joints.

The Effects of Elastic Modulus Coefficient and Linear Expansion Coefficient of Overhead Conductor on Sag Behavior (가공전선의 이도거동에서 탄성계수와 선팽창계수의 영향)

  • Kim, Byung-Geol;Kim, Shang-Shu;Wang, Yun-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.954-960
    • /
    • 2008
  • The effects of elastic modulus coefficient and linear expansion coefficient of overhead distribution power line(ACSR $58 mm^2$) on sag behavior in distribution line have been investigated to clarify the difference between specification and experimental level. The elastic modulus coefficients of Al wire and steel wire were $5,182.6 kgf/mm^2,\;18,348.8 kgf/mm^2$, respectively Therefore, the computational composition elastic modulus coefficient of the power line was $7,063.5 kgf/mm^2$, while that of experimentally measured was $7681.1 kgf/mm^2$. As a result, we found that elastic modulus coefficient which was experimentally measured was higher than that of computational by 8.7 %. However, when planner designs the sag of disoibution line, the elastic modulus coefficient of power line $8,400 kgf/mm^2$ should be generally adopted. These two different using values lead to the sag difference of 0.62 m. The other results will be discussed.

Viscoelastic Fluid Flow in a Sudden Expansion Circular Channel as a Model for the Blood Flow Experiments

  • Pak, Bock-Choon;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.233-242
    • /
    • 1990
  • In the current flow visualization studies, the role of non-Newtonian characteristics (such as shearra to dependent viscosity and viscoelasticity ) on flow behavior across the sudden ex- pansion step in a circular pipe as a model for blood flow experiments is investigated over a wide range of Reynolds numbers. The expansion ratios tested are 2.000 and 2.667 and the range of the Reynolds number covered in the current flow visualization tests are 10~35, 000 based on the inlet. diameter. The reattachment longuEs for the viscoelastic fluids in the lami- nar flow regime are found to be much shorter than those for the Newtonian fluid. In addition it decreases significantly with increasing concentration of viscoelastic fluids at the same Reynolds number. However, in the turbulent flow regime, the reattachment length for the viscoelastic fluids Is two or three times longer than those for water, and gradually increases with increasing concentration of viscoelastic solutions, resulting In 25 and 28 step-height dis- tances for 500 and 1, 000 lpm ployacrylamide solutions, respectively. This may be due to the fact that the elasticity in pobacrylamide solutions suppresses the eddy motion and controls separation and reattachment behavior in the sudden expansion pips flow.

  • PDF

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

Behavior of Pile Foundation of Skewed Plate Girder Bridge with Integral Abutment (일체교대식 판형교의 사각변화에 따른 파일기초 거동분석)

  • 서혜선;이성우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.389-396
    • /
    • 1998
  • One solution to prevent deterioration due to expansion joint and to extend lifetime of short span bridges, is jointless integral abutment bridge. To understand behavior of pile foundation of skewed plate girder bridge with integral abutment, finite element analysis was performed for the model of different skew angle from 90。 to 50。. Comparison of stresses at pile and abutment was made for each case. It is found that effect of temperature change is major factor to influence the behavior of skewed integral abutment bridge.

  • PDF