• Title/Summary/Keyword: expansion behavior

Search Result 862, Processing Time 0.034 seconds

Analysis on Response Characteristics of a Flexible Net Sheet in Waves (파랑중 유연한 그물망의 응답특성 해석)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-96
    • /
    • 2012
  • Based on the hydroelastic theory and the matched eigenfunction expansion method(MEEM), the dynamic behavior of the porous flexible net sheet and wave forces have been investigated in monochromatic waves. The net sheet is installed vertically with the submergence depth. Top end of a net sheet is fixed and its lower end is attached by a clump weight. It is assumed that the initial tension is sufficiently large so that the effects of dynamictension variation can be neglected. The boundary condition on the porous flexible net sheet is derived based on Darcy's fine-pore model and body boundary condition. The developed analytic model can be extended to the impermeable/permeable vertical plate and the impermeable flexible membrane. The analytical model was used to study the influence of design parameters(wave characteristics, porosity, submergence depth, initial tension) on the response characteristics and wave load of the net sheet.

Thermophysical Properties of 4D Carbon/Carbon Composites with Preform Architectures (프리폼 구조에 따른 4방향성 탄소/탄소 복합재의 열물리적 특성)

  • Kim, Zeong-Baek;Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.580-586
    • /
    • 2007
  • In this study, 4 directional carbon/carbon composites with different preform architectures were manufactured and their thermophysical properties are studied. Carbon fiber preforms are fabricated with fiber bundles using four different spaces. The density of the fabricated preforms were increased through pressure impregnation and carbonizing process. The increased density of the composites was graphitized at $2300^{\circ}C$. Microstructures of these composite were observed under scanning electron microscope. This was to understand the effect the preform architectures has on the thermophysical properties of carbon/carbon composites. Also, the behavior of thermal conduction and heat expansion was investigated and studied in association with the factors of the reinforced direction of fibers and unit cell of preforms.

Characteristics of Nano-Sized, α-2ZrO2·P2O5 Powder Prepared by Polyvinyl Alcohol Solution Method (Polyvinyl Alcohol 용액법에 의해 제조된 나노크기 α-2ZrO2·P2O5 분말의 특성 연구)

  • Ma, Chung-Il;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.179-183
    • /
    • 2017
  • $2ZrO_2{\cdot}P_2O_5$ powder, which is not synthesized by solid reaction method, was successfully synthesized through PVA solution method. In this process, the firing temperature and the PVA content strongly affected the crystallization behavior and final particle size. A stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ was synthesized at a firing temperature of $1200^{\circ}C$ and holding time of 4 h. ${\beta}$-phase $2ZrO_2{\cdot}P_2O_5$ was observed, with un-reacted $ZrO_2$ phases, for firing temperatures lower than $1200^{\circ}C$. In terms of the PVA content effect, the powder prepared with a PVA mixing ratio of 12:1 showed stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$; however, the ${\beta}$-phase was found to co-exist at relatively higher PVA content. The synthesized ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ powder showed an average particle size of 100~250 nm and an average thermal expansion coefficient of $-2.5{\times}10^{-6}/^{\circ}C$ in the range of room temp. ${\sim}800^{\circ}C$.

On Numerical Method for Radiation Problem of a 2-D Floating Body (2차원 부유체 강제동요문제의 수치해석에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.43-53
    • /
    • 1993
  • There exist two difficulties in the nonlinear wave-body problems. First is the abrupt behavior near the intersection point between the body and the free surface, and second is the far field treatment. In this paper, the far field treatment is considered. The main idea is the Taylor series expansion of free-surface geometry and the application of F.F.T. algorithm. The numerical step is as follows. The velocity potential is expressed by the Green's theorem. and the solution is obtained by iteration method. In the iteration stage, the expressions by the Green's theorem are transformed to the convolution forts with the expansion of free surface by the wave slope. Here F.F.T. is applied, so the computing time can be of O(Nlog N) where N is the number of unknowns. The numerical analysis is carried out and the results are compared with other results in linear floating body problem and nonlinear moving pressure patch problem, and good agreements are obtained. Finally nonlinear floating body radiation problem is carried out with computing time of O(Nlog N).

  • PDF

Experimental and Phenomenological Modeling Studies on Variation of Fiber Volume Fraction during Resin Impregnation in VARTM (VARTM 공정에서 수지 함침에 따른 섬유체적율 변화의 측정 및 현상학적 모델링 연구)

  • Kim, Shin O;Seong, Dong Gi;Um, Moon Kwang;Choi, Jin Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.340-347
    • /
    • 2015
  • As resin impregnates through the fiber preform in vacuum assisted resin transfer molding process, the volume of fibers is changed by expansion of fiber mat according to filling time. It causes not only the change in dimension but also the decrease of mechanical properties of the composite product. Moreover, it results in the economic loss by increase of the used amount of resin especially in the large product such as wind turbine blade. In this study, the ways to control fiber volume fraction were investigated by both the experimental and theoretical analyses on the expansion of fiber preform as the preform was impregnated by resin in the VARTM process. Two kinds of swelling stage were observed as flow front progressed, which was analyzed by comparing the experimental and simulation results. The process parameters are expected to be optimized by investigating the swelling behavior of fiber preform in the manufacturing process of the composite product.

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

Dimensional Stability of Poly(ethylene/propylene naphthalate) as a Flexible Substrate Application (유연 기판 소재로 응용을 위한 폴리(에틸렌/프로필렌 나프탈레이트)의 치수안정성 연구)

  • Kim, Jae-Hyun;Heo, Hye-Young;Jung, Tae-Houng;Han, Joon-Hee;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.33 no.4
    • /
    • pp.371-376
    • /
    • 2009
  • The 1,3-propane diol has been introduced as a co-monomer with ethylene glycol to polymerize the poly(ethylene/propylene naphthalate) in order to improve the dimensional stability of poly(ethylene naphthalate) for a possible flexible substrate material. Based on $^1H$-NMR results, it was found that poly (ethylene/propylene naphthalate) has been synthesised successfully. Introducing 1,3-propane diol resulted in the amorphous state in polyester as well as lowering of glass transition and thermal degradation temperature. Coexisting relatively longer propylene segment compared with ethylene in synthesized polyester caused less orientation behavior and reducing thermal expansion coefficient. This is a promising result for poly (ethylene/propylene naphthalate) to apply a flexible substrate.

Fracture Analysis on Crack Propagation of RC Frame Structures due to Extreme Loadings (극한 진동에 의한 철근콘크리트 뼈대구조물에 균열전파의 파괴 역학적 특성 연구)

  • Jeong, Jae-Pyong;Lee, Myung-Gon;Kim, Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.191-199
    • /
    • 2003
  • The inelastic response of many structural steel and reinforced concrete structures subject to extreme loadings can be characterized by elastoplastic behaviors. Although excursion beyond the elastic range is usually not permitted under normal conditions of service, the extent of permanent damage a structure may sustain when subjected to extreme conditions, such as severe blast or earthquake loading, is frequently of interest to the engineer. A blast is usually the result of an explosion defined as a "sudden expansion". This paper discusses the basic concept that defines blast loadings on structures and corresponding elastoplastic structural response (displacement, velocity, and acceleration) and try to explain a crack propagation of concrete in sudden expansion. According to nonlinear finite element analysis, the crack forms of static and dynamic states displayed different in RC structural members. This paper also provides useful data for the dynamic fracture analysis of RC frame structures.

Shrinkage Properties of Blast Furnance Slag Cement Mortar by using Frost-Resistant Accelerator (내한촉진제를 사용한 고로시멘트 모르타르의 수축성상)

  • Choi, Hyeong-Gil;Lee, Jun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • In this study, the effects of blast furnance slag cement and frost-resistant accelerator on shrinkage properties and shrinkage properties of mortar were examined. As a result, the addition of the frost-resistant accelerator to both OPC and BB has a small effect on the flash properties of mortar and the compressive strength increases from the early ages. In addition, when a frost-resistant accelerator is used in excess of the standard usage amount, it is necessary to examine the relationship of the expansion behavior at the early age, especially, between the compressive strength development and the expansion property. And it was confirmed that the addition of the frost-resistant accelerator tended to increase the shrinkage of mortar using the OPC and BB. With the addition of the frost-resistant accelerator, the amount of pores with a diameter of under the 30nm, especially, the amount of pores with a diameter of 20 to 30nm and the amount of pores with an ink-bottle decrease, and the shrinkage increases. And it is considered that a change in the amount this range of pores has a large effect on the shrinkage property.