• Title/Summary/Keyword: expander cycle

Search Result 74, Processing Time 0.021 seconds

Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC (유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향)

  • Cho, Soo-Yong;Cho, Chong-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.

Characteristics of Scroll-type Stirling Engine for Solar Power (태양열 발전용 스크롤 방식 스털링 엔진의 특성)

  • Kim, Young-Min;Shin, Dong-Kil;Kim, Woo-Young;Kim, Hyun-Jin;Lee, Sang-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.169-173
    • /
    • 2008
  • Stirling engine is a promising heat engine with a high efficiency, muti-fuel capability, low emission, quiet operation, very low maintenance and long life. As one of the promising applications, solar power system based on the Stirling dish, providing net solar-to-electric conversion efficiencies reaching 30%, can operate as stand-alone units in remote locations or can be linked together in groups to provide utility-scale power. This paper introduced a new Scroll-type Stirling engine, being developed for solar power, superior to conventional Stirling engines. The Scroll-type Stirling engine is characterized as traits of continuous and wholly separated compression and expansion; one-way flow system; direct cooling and heating the fluid in the working spaces through the extensive inner surfaces of scroll wraps. All theses traits contribute to achieving thermodynamic cycle closer to the ideal Stirling cycle (exactly speaking, Ericsson cycle).

  • PDF

Experimental Research on an Organic Rankine Cycle Using Engine Exhaust Gas (엔진 배기열 이용 유기랭킨사이클에 대한 실험적 연구)

  • Shin, Dong Gil
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.393-397
    • /
    • 2012
  • In this study, an organic Rankine cycle(ORC) for gas engine waste heat recovery for industry has been constructed and a performance analysis test has been carried out. Shell & tube style heat exchanger has been equipped on an engine exhaust manifold in order to absorb heat of engine exhaust gas into the working fluid(refrigerant R134a). Under 60 kW of engine power output, about 63 kW of engine exhaust gas heat was discharged and the proportion of heat recovered was 68~73% while 43~46 kW of heat was absorbed into working fluid. Consequently rated power output of ORC was 4.6 kW while the ratio of rated power output to engine exhaust gas heat was 7.3%.

Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle (석탄가스화 복합발전용 가스터빈의 성능 평가)

  • Lee, Chan;Lee, Jin-Wook;Yun, Yong-Seung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

Performance Analysis of R-134a Rankine Cycle to Apply for a Solar Power Generation System Using Solar Collector Modeling (태양열 집열기 모델링을 활용한 발전용 R134a 랭킨사이클의 성능해석)

  • Joung, Jinhwan;Kang, Byun;Tong, Yijie;Cho, Honghyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.57-65
    • /
    • 2014
  • As the environmental regulations is more strengthened, the study of the renewable energy system and waste heat for electricity production is being accelerated. In this study, the performance and power generation rate of solar power generation by using R134a Rankine cycle was analyzed with solar radiation and mass flow rate of R134a. As a result, the maximum and minimum collected heat of solar collector was 20.4 kW and 13.6 kW at October and December, respectively. Besides, the highest generator power was generated at October and it was 0.91 kW/day, while the lowest generator power is occurred at December and it was about 0.85 kW/day.

Perspective of Technology for Liquid Rocket Engines (액체로켓엔진 기술 전망)

  • Cho, Won Kook;Ha, Sung Up;Moon, Insang;Jung, Eun Whan;Kim, Jin Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.675-685
    • /
    • 2016
  • A research area on liquid rocket engine has been suggested. Downsizing through combustion pressure rise and low price are major issues to gas generator cycle engines. A very high pressure turbopump and material against oxidizer rich environment may be necessary technologies for staged combustion cycle engines. Integrated analysis saving computing time is the trend of rocket engine systems analysis area. Other important research topics are the methane engine for reusable booster to reduce the cost, 3D printing and materials for high temperature or oxidizer rich environment.

Integration of the Engine Control into the Optimal Trajectory Determination for a Spaceplane

  • Matsunaga, Kensuke;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Okabe, Yoriji
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.742-748
    • /
    • 2004
  • In this paper are presented TSTO system analysis including some controlled variables on the engine operation such as a fuel flow rate and a pressure ratio of compressor, as well as variables on the trajectory. TSTO studied here is accelerated up to Mach 6 by a fly-back booster powered by air breathing engines. Three different types of engine cycle were treated for propulsion system of the booster, such as a turbo ramjet, a precooled turbojet and an EXpander cycle Air Turbo Ramjet (ATREX). The history of the controlled variables on the engine operation was optimized by Sequential Quadratic Programming (SQP) to accomplish the minimum fuel consumption. The trajectory was also optimized simultaneously. The results showed that the turbo ramjet gave the best fuel consumption. The optimal trajectory was almost the same except in the transonic range and just before reaching to Mach 6. The history of the pressure ratio of compressor considerably depended on the engine type. It is concluded that simultaneous optimization for engine control and trajectory is effective especially for a high-speed airplane propelled by turbojets like the TSTO booster.

  • PDF

Analysis of Efficiency Enhancement of the Integrated Gasification Combined Cycle with Oxy-Combustion Carbon Capture by Changing the Oxygen Supply System (순산소연소 이산화탄소 포집을 적용한 석탄가스화 복합화력 발전시스템에서 산소공급방식 변경에 의한 효율향상 분석)

  • CHO, YEON WOO;AHN, JI HO;KIM, TONG SEOP
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2019
  • As a solution to the growing concern on the global warming, researches are being actively carried out to apply carbon dioxide capture and storage technology to power generation systems. In this study, the integrated gasification combined cycle (IGCC) adopting oxy-combustion carbon capture was modeled and the effect of replacing the conventional air separation unit (ASU) with the ion transport membrane (ITM) on the net system efficiency was analyzed. The ITM-based system was predicted to consume less net auxiliary power owing to an additional nitrogen expander. Even with a regular pressure ratio which is 21, the ITM-based system would provide a higher net efficiency than the optimized ASU-based system which should be designed with a very high pressure ratio around 90. The optimal net efficiency of the ITM-based system is more than 3% higher than that of the ASU-based system. The influence of the operating pressure and temperature of the ITM on system efficiency was predicted to be marginal.

Study of KIMM-E1 Stirling Cryocooler Performance with Different Charging pressure (충진압력에 따른 KIMM-E1 스터링 극저온 냉동기에 관한 연구)

  • 박성제;홍용주;고득용;김효봉;오군섭;염한길;김종학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.33-36
    • /
    • 2001
  • A free piston and free displacer(FPFD) Stirling cryocooler for cooling infrared and cryo-sensors is currently under development at KIMM(Korea Institute of Machinery & Materials). The FPFD Stirling cryocooler employs 1) the Stirling cycle for refrigeration, 2) linear motors for driving the cryocooler, 3) spring and gas support systems, and 4) fine gap for clearance seals. It is the most suitable design for a mechanical cryocooler utilized in night vision environment. The experimental results show KIMM-E1 Stirling cryocooler (with expander manufactured by KIMM) has the higher cooling power and faster response time at optimum charging pressure.

  • PDF

Experimental Investigation on the Performance of a Scroll Expander for an Organic Rankine Cycle (유기랭킨사이클(ORC)을 위한 주전열면 열교환기의 채널주름비에 따른 유동 및 열전달특성)

  • Sung, Min-Je;Ahn, Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.158-162
    • /
    • 2014
  • A series of numerical simulation has been carried out to study thermo-hydraulic characteristics of a primary surface type heat exchanger, which is designed for the evaporator and condenser of a geothermal ORC. Working fluid is geothermal water at hot side and R-245fa, which is a refrigerant designed for ORC, at cold side. Amplitude ratio of the channel and Reynolds number are considered as design parameters. Nusselt number is presented for the Reynolds number ranging from 50 to 150 and compared to analytic solutions. The result shows that higher amplitude ratio channel gives better heat transfer performance within the range of investigation.