• 제목/요약/키워드: expander cycle

검색결과 74건 처리시간 0.021초

팽창기 사이클 수소 로켓엔진의 시스템 해석 (System Analysis of Expander Cycle Hydrogen Rocket Engine)

  • 하동휘;노태성;이형진;유필훈
    • 한국추진공학회지
    • /
    • 제24권5호
    • /
    • pp.21-33
    • /
    • 2020
  • 본 연구에서는 액체 수소를 연료로 사용하는 팽창기 사이클 로켓 엔진의 시스템 해석을 위한 프로그램을 개발하였다. 수소의 물성치는 온도에 따른 이성질체의 비율을 고려하였다. 팽창기 사이클 엔진의 개방형과 폐쇄형 형식에 따른 해석 절차를 수립하고 부품별 해석 방법을 제시하였다. 본 해석 프로그램의 검증을 위해 팽창기 사이클 엔진인 Vinci와 SE-21D를 대상으로 엔진 작동점의 성능 및 국외에서 수행된 해석 결과와 비교하였다. 해석 결과, 입력 정보가 부정확한 일부를 제외한 추진제의 질유량, 비추력, 동력과 같은 시스템의 주요 성능 인자는 1~2% 내외의 오차로 높은 정확도를 나타내었다.

비대칭 대수나선 스크롤 팽창기 설계에 관한 연구 (A Study on the Design of an Asymmetric Algebraic Scroll Expander)

  • 김현진;문제현;이영성
    • 설비공학논문집
    • /
    • 제26권3호
    • /
    • pp.122-129
    • /
    • 2014
  • In order to extract shaft power from thermal energy in a R134a Rankine cycle as waste heat recovery system of a passenger car, a scroll expander has been designed. Algebraic spiral is adopted as the base curve for scroll wrap profile in the compact scroll design. About 19% reduction in scroll diameter is accomplished when compared to the conventional involute scroll. Performance analysis on the designed scroll expander shows that the expander efficiency is 85.5% at the vehicle speed of 120 km/hr and it decreases to 67.2% at 60 km/hr, provided that the scroll clearance is kept at 10 ${\mu}m$. The expander can produce shaft power equivalent to about 13~14% of the driving power within the speed range of 60~120 km/hr.

유기랭킨사이클 적용 스크롤 팽창기 성능 특성 연구 (Operating Characteristics of a Scroll Expander Used in Organic Rankine Cycle)

  • 신동길;김영민;김창기
    • 설비공학논문집
    • /
    • 제23권12호
    • /
    • pp.776-781
    • /
    • 2011
  • The rapid increases in global energy demand and global warming need renewable energy sources such as solar thermal energy, biomass energy and waste heat. A ORC-based micro-CHP system(< 10 kWe) is one of the effective means to use renewable energy and solve energy problems because of its compactness, flexibilities and lower cost compared to other systems. The most important core components of the ORC is the expander which has a strong effect on the cycle efficiency. In the range of power output from 1 to 10 kW, the scroll expander is a good choice due to its performance and reliability. In this study, we have carried out an experimental study on an ORC equipped with oil-free scroll expander working with refrigerant R134a. We have measured power output and thermal efficiencies of the ORC and analyzed correlation between volumetric efficiencies of the expander and thermal efficiencies of the ORC.

가변 열원에서 작동하기 위한 유기랭킨 사이클에 관한 연구 (A Study on the Organic Rankine Cycle for the Fluctuating Heat Source)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제17권1호
    • /
    • pp.12-21
    • /
    • 2014
  • An organic Rankine cycle was analyzed to work at the optimal operating point when the heat source is fluctuated. R245fa was adopted as a working fluid, and an axial-type turbine as expander on the cycle was designed to convert the heat energy to the electricity since the turbo-type expander works at off-design points better than the positive displacement-type expander. A supersonic nozzle was designed to increase the spouting velocity because a higher spouting velocity can produce more output power. They were designed by the method of characteristics for the operating fluid of R245fa. Three different cases, such as various spouting velocities, various inlet total temperatures, and various nozzle numbers, were studied. From these results, an optimal operating cycle can be designed with the organic Rankine cycle when the available heat source as renewable energy is low-grade temperature and fluctuated.

ORC 시스템의 운전 특성에 관한 실험연구 (Experimental Study on the Operating Characteristics of the Organic Rankine Cycle)

  • 엄홍선;윤천석;김영민
    • 설비공학논문집
    • /
    • 제25권4호
    • /
    • pp.208-215
    • /
    • 2013
  • An experimental study of an ORC (Organic Rankine Cycle) system has been performed for small-scale applications in the range of a few kW for low-grade-recovery heat sources. The ORC system was equipped with a scroll expander. Experimental tests were carried out using this system, and showed good performance and reliability for the small-scale system. The effects of various operating conditions were selected as the main parameters for the performance of ORC system, such as the expander speeds and mass flow rates of R-134a for expander inlet temperatures ranging from $100^{\circ}C$ to $190^{\circ}C$, as well as the thermal power, thermal efficiency, expansion efficiency, and volumetric efficiency.

고속 Tube Expander의 동적 모델링 및 해석 (Analysis and Dynamic Modeling of a High-speed Tube Expander)

  • 김재량;정원지;김수태;최욱환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.401-411
    • /
    • 2003
  • Tube expanding process is for combining a heat-sink plate with hair-pins (Cu-tube) through plastic deformation. The two parts, i. e. , heat-sink plate and hair-pins are they components of a heat-exchanger for an air conditioner. This paper presents the analysis and dynamic modeling of a high-speed tube expander which integrates transfer of parts, fixing of parts, and tube expanding into one process. The 3-dimensional modeling of all the parts for the tube-expander was constructed using CATIA$\circledR$. then the CATIA$\circledR$ models are transferred into visuaINastran$\circledR$ to execute the 3-dimensional animation for checking prescribed cycle-time. The technique presented in this paper has been shown to be effective as a priori tool for verifying the design of a high-speed tube expander.

  • PDF

초월임계 이산화탄소 사이클의 성능향상에 관한 시뮬레이션 연구 (Simulation Study on the Performance Improvement of a Transcritical Carbon Dioxide Cycle)

  • 조홍현;김용찬;서국정
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.158-166
    • /
    • 2004
  • The performance of a heat pump using $CO_2$ is predicted and analyzed by using a cycle simulation model developed in this study. Cycle simulations are conducted by varying design parameters and operating conditions with the applications of advanced techniques to improve system performance. The applied systems in the simulations are internal heat exchanger, expander, and 2-stage compression with intercooling. As a result, the applications of advanced techniques improve the heating and cooling performances of the transcritical $CO_2$ cycle by 8∼26% and 20∼30%, respectively, over the basic cycle.

유기랭킨사이클용 부분분사터빈의 초음속노즐 설계에 대한 연구 (A Study of Supersonic Nozzle Design for Partial Admitted Turbine Used on Organic Rankine Cycle)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.5-12
    • /
    • 2014
  • Organic Rankine Cycle is widely used to convert the low-grade thermal energy to the electrical energy. However, usually available thermal energy is not supplied constantly. This makes hard to use positive displacement expanders. Hence, turbo-expander has merits to apply as an expander in ORC because it can operate well off-design points even though the mass flowrate is fluctuated. The thermal energy fluctuation causes the turbo-expander to operate in partial admission. In addition, supersonic nozzles are required so that the partially admitted turbine operates efficiently. In this study, R245fa was chosen as a working fluid of ORC. A design method and an analysis technique of supersonic nozzle based on R245fa were developed. The shape of the nozzle was designed by the characteristic method. The thermal properties within the nozzle were estimated and the predicted results were agreed well with the computed results.

유기랭킨사이클용 소형 스크롤 팽창기 제작 및 성능 특성 연구 (Fabrication and Study on the Performance Characteristics of a Scroll Expander for Organic Rankine Cycle)

  • 백승동;성태홍;이민석;김경천
    • 한국가스학회지
    • /
    • 제20권5호
    • /
    • pp.50-56
    • /
    • 2016
  • 본 연구에서는 개방형 무급유식 스크롤 압축기를 개조하여 유기랭킨사이클(ORC)용 소형의 스크롤 팽창기를 설계 및 제작하였다. 팽창기 케이스는 직육면체 형태로 총 체적은 $0.0394m^3$이며, 성능특성 연구를 위해 작동유체로 R245fa를 사용하는 ORC 사이클을 구축하고, 다양한 팽창기 입구압력 및 회전속도 조건에서 성능시험을 수행하였다. 성능시험에서 획득한 열역학적 물성값을 스크롤 팽창기의 semi-empirical 시뮬레이션 모델에 적용해 파라미터를 계산하고, 열역학적 분석을 통해 계산한 실험값과 시뮬레이션값의 비교를 수행하였다.

초전도 전력 케이블 냉각 시스템 적용을 위한 극저온 터보 팽창기 설계 및 해석 (Design and Analysis of Cryogenic Turbo Expander for HTS Power Cable Refrigeration System)

  • 이창형;김동민;양형석;김석호
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.141-148
    • /
    • 2015
  • The cryogenic cooling system should maintain the HTS power cable below 77 K. As the length of HTS power cables has increased, there have been many efforts to develop large capacity cryocoolers. Brayton, Joule-Thomson, and Claude refrigerators were considered for the large capacity cryocooler. Among the various cryocoolers, the Brayton refrigerator is the most competitive in terms of the HTS power cable. At present, it is thought that a 10-kW class refrigerator will be able to be used as a unit cooling system for the commercialization of HTS power cables in the near future. The Brayton refrigerator is composed of recuperative heat exchangers, a compressor, and a cryogenic turbo expander. Among the various components, the cryogenic turbo expander is the part that decreases the temperature, and it is the most significant component that is closely related with overall system efficiency. It rotates at high speed using high-pressure helium or neon gas at cryogenic temperatures. This paper describes the design of a 300-W class Brayton refrigeration cycle and the cryogenic turbo expander as a downscale model for the practical 10-kW class cycle. Flow and structural analyses are performed on the rotating impeller and nozzle to verify the efficiency and the design performance.