• 제목/요약/키워드: expander cycle

검색결과 74건 처리시간 0.029초

차량용 CO2 에어컨 사이클 성능 향상을 위한 일체형 팽창기-압축기 성능 해석 (An Analysis of the Performance of a Combined Expander-Compressor Unit for a CO2 Automotive Air Conditioning Cycle)

  • 최재웅;임정택;김현진
    • 설비공학논문집
    • /
    • 제30권3호
    • /
    • pp.107-115
    • /
    • 2018
  • A design combining the use of a compressor and expander was introduced in order to improve the cycle performance of a $CO_2$ automotive air conditioning system. Both the compressor and expander used were of rotary vane type and were designed to share a common shaft in a housing. Numerical simulation was carried out to evaluate the merit of the combined unit. In a typical automotive air conditioning operating conditions, the COP of the system was improved by 8.7% by the application of the combined unit. The compressor input was reduced by 5.2% through use of the expander output. In addition, about 3.06% increase in the cooling capacity was obtained through isentropic expansion in the expander. Our study noted that, as the pressure difference between the gas cooler and the evaporator becomes larger, the COP of the system improved increases unless the mass flow rate in the expander exceeds that in the compressor.

$CO_2$ 사이클용 로타리 베인 팽창기 성능해석 (Performance Analysis of Vane Rotary Expander for $CO_2$ Cycles)

  • 김호영;안종민;김현진;조성욱
    • 설비공학논문집
    • /
    • 제21권1호
    • /
    • pp.55-62
    • /
    • 2009
  • Relatively low cycle performance of a conventional $CO_2$ system is partly due to significant increase in friction loss in the expansion process, since the pressure drop across the expansion device is considerably large compared to a conventional refrigeration cycle. To recover friction loss and increase refrigeration effect by providing isentropic expansion, a rotary vane type expander has been designed. Performance of the designed expander has been investigated by numerical simulation. With the pressure condition of 9 MPa/4.5 MPa and inlet temperature of $35^{\circ}C$, volumetric, isentropic, and mechanical efficiencies of the expander are calculated to be 58.1%, 101.1%, and 78.8%, respectively, resulting in total expander efficiency of 46.3%. With this expander, COP of a $CO_2$ refrigeration cycle is estimated to be improved by about 14%.

신재생에너지 가변열원의 효율적 이용을 위한 유기랭킨 사이클 최적작동점에 관한 연구 (Optimal Operating Points on the Organic Rankine Cycle to Efficiently Regenerate Renewable Fluctuating Heat Sources)

  • 조수용;조종현
    • 신재생에너지
    • /
    • 제10권1호
    • /
    • pp.6-19
    • /
    • 2014
  • Organic Rankine cycle (ORC) has been widely used to convert renewable energy such as solar energy, geothermal energy, or waste energy etc., to electric power. For a small scale output power less than 10 kW, turbo-expander is not widely used than positive displacement expander. However, the turbo-expander has merits that it can operate well at off-design points. Usually, the available thermal energy for a small scale ORC is not supplied continuously. So, the mass flowrate should be adjusted in the expander to maintain the cycle. In this study, nozzles was adopted as stator to control the mass flowrate, and radial-type turbine was used as expander. The turbine operated at partial admission. R245fa was adopted as working fluid, and supersonic nozzle was designed to get the supersonic flow at the nozzle exit. When the inlet operating condition of the working fluid was varied corresponding to the fluctuation of the available thermal energy, optimal operating condition was investigated at off-design due to the variation of mass flowrate.

가열구조를 갖는 스크롤 팽창기와 이를 이용한 분산발전 시스템 (Scroll Expander with Heating Structure and Their Systems for Distributed Power Source)

  • 김영민;신동길;이장희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.225-231
    • /
    • 2004
  • Scroll compressor has been used extensively for refrigeration since the early 1980's for its improved efficiency, greater reliability, smoother operation, lower noise and vibration. And also, nowadays, the scroll mechanism is used for expander even though in niche market yet. But scroll expander has not been used for high-temperature and high-pressure gas, because the continuous expansion of the gas causes a wide range of temperature distribution over the whole scroll wrap that leads to differential thermal expansion of scroll elements, which results in system vibrations, noise and efficiency losses. For the scroll expander to produce power more efficiently, all of radial and radial clearances between scroll wrap must be the same. In order to reduce differential thermal expansion in addition to improvements in thermal efficiency and specific power, we propose a scroll expander with heating structure. Heat-pipe heating structure is considered as the most effective method to heat the scroll expander at a uniform temperature. This paper includes some results of preliminary study of the scroll expander with heating structure and proposals of their systems for power generation and refrigeration.

  • PDF

일체형 로타리 압축기-베인 팽창기 (A Combined Rotary Compressor-vane Expander)

  • 김현진;노영재;김용희
    • 한국유체기계학회 논문집
    • /
    • 제18권3호
    • /
    • pp.12-19
    • /
    • 2015
  • As a means of improving cycle performance of a R410A air-conditioning system, a combined structure of compressor and expander was introduced. A vane rotary type expander was designed to share a common shaft with twin type rolling piston rotary compressor in a housing. Numerical simulation on the performance of the combined compressor and expander was carried out. At ARI condition, the volumetric and total efficiencies of the designed vane expander were 69.37% and 30.23%, respectively. With the application of this expander, the compressor input was reduced by 3.91%, and the cooling capacity was increased by 3.98%. As a result, COP of the air-conditioning system was improved by 8.2%. As the pressure difference between the condenser and the evaporator becomes large, COP improvement increases unless the mass flow rate in the expander exceeds that in the compressor.

승용차 폐열 회수용 유기 랭킨 사이클 성능 분석 (Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car)

  • 김현진;문제현;유제승;이영성
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

Conceptual design of cryogenic turbo expander for 10 kW class reverse Brayton refrigerator

  • Lee, Chang Hyeong;Kim, Dong Min;Yang, Hyung Suk;Kim, Seokho
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.41-46
    • /
    • 2015
  • Recently, the development of the HTS power cable is actively promoted. As the length of HTS power cable increases, there have been many efforts to develop large capacity cryocooler. Among the various cryocooler, the Brayton refrigerator is the most competitive for HTS power cable. The Brayton refrigerator is composed of recuperative heat exchangers, a compressor, and a cryogenic turbo expander. In these components, the cryogenic turbo expander is a part to decrease the temperature and it is the most significant component that is closely related with overall system efficiency. It rotates with high speed using a high-pressure helium or neon gas at cryogenic temperature. This paper describes the design of a 10 kW class Brayton refrigeration cycle and the cryogenic turbo expander. Flow and structural analysis are performed for the rotating impeller and nozzle to verify the efficiency and the design performance.

유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구 (Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC)

  • 문제현;박근태;김현진
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

1kW급 유기랭킨사이클용 스크롤 팽창기의 성능 특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of a Scroll Expander for 1kW-class Organic Rankine Cycle)

  • 김도균;윤은구;윤상열;김경천
    • 한국가스학회지
    • /
    • 제19권4호
    • /
    • pp.41-48
    • /
    • 2015
  • 스크롤 팽창기의 성능특성은 유기랭킨사이클 (ORC) 시스템의 성능에 가장 중요한 변수이다. 본 연구에서는 1kW급 ORC 시스템을 구성하여 다양한 작동 조건에서 스크롤 팽창기의 성능특성을 파악하였다. ORC 시스템은 증발기, 스크롤 팽창기, 응축기, 작동유체펌프로 구성되어 있으며, 작동유체로 R245fa를 사용하였다. 고온수 온도는 50kW급 전기히터에 의해 $80^{\circ}C$에서 $115^{\circ}C$까지 제어되었다. 스크롤 팽창기의 최대 등엔트로피 효율은 77%로 측정되었고, ORC 시스템의 축동력은 열원의 온도 조건 및 팽창기의 회전속도에 따라 0.5kW에서 1.8kW까지 측정되었다.

자동차 엔진 폐열 회수 동력시스템에서 용적형 팽창기의 설계 팽창비 최적화 (Optimization of Design Pressure Ratio of Positive Displacement Expander for Engine Waste Heat Recovery of Vehicle)

  • 김영민;신동길;김창기;우세종;최병철
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.411-418
    • /
    • 2012
  • 본 연구에서는 가솔린 엔진 자동차의 엔진 폐열 회수를 위한 이중 회로 랭킨 사이클 시스템에서 용적형 팽창기의 설계 팽창비에 따른 성능 해석이 수행되었다. 자동차 엔진 폐열 이용 랭킨 사이클 시스템에 사용되는 용적형 팽창기는 운전 조건에 따라 설계 팽창비가 운전 압력비보다 낮은 저팽창 조건과 설계 팽창비가 운전 압력비보다 높은 과팽창 조건으로 운전되므로 탈설계 조건에서 성능 예측이 중요하다. 또한 용적형 팽창기는 자동차 적용시 팽창효율 뿐만 아니라 부피와 무게를 최소화하는 것이 매우 중요하므로 이를 고려한 설계 팽창비의 최적화가 요구된다. 본 연구에서는 용적형 팽창기의 탈설계 조건에서 성능 예측을 통해 팽창효율과 팽창기의 용적을 동시에 고려하여 설계 팽창비를 목표 운전 압력비보다 낮도록 하여 저팽창 운전을 하도록 설계 하는 것이 유리함을 제시하였다.