• Title/Summary/Keyword: exothermic process

Search Result 157, Processing Time 0.027 seconds

THE MEASUREMENT OF EXOTHERMIC TEMPERATURE OF VARIOUS DENTAL CEMENTS (각종 치과용 세멘트의 경화열 측정)

  • Pahk, Deok-Sang
    • The Journal of the Korean dental association
    • /
    • v.10 no.8
    • /
    • pp.531-534
    • /
    • 1972
  • The author measured exothermic temperature of the 5 kinds of zinc phosphate cement and 3 kinds of copper phosphate cement during setting process. Cements were mixed on the glass slab with flexible steel spatula at room temperature (25.8℃) for one minute (spatulating speed was 100 strokes per minute) and placed in the incubator of which temperature was held at 37℃ and thermometer was inserted into the cement mass. The powder liquid ration was 3.0gm:1ml and 1.5gm:1ml. The results were as follows. 1) The heat generated after mixing these cements was under 47.22℃. 2) The range of thermal change of the zinc phosphate cements during setting process was wider than copper phosphate cements. 3) The exothermic temperature from the thin mix was higher than thick mix. 4) The exothermic temperature of the zinc phosphate cements was higher than copper phosphate cements.

  • PDF

CORRELATION BETWEEN MICROSTRUCTURE AND EXOTHERMIC REACTION KINETICS OF Al-CuO THERMITE NANOCOMPOSITE POWDERS FABRICATED BY CRYOMILLING

  • MINSEOK OH;KWANIL KIM;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.931-934
    • /
    • 2019
  • Al-CuO is a thermite material exhibiting the exothermic reaction only when aluminum melts. For wide spread of its application, the reaction temperature needs to be reduced in addition to the enhancement of total reaction energy. In the present study, a thermite nanocomposite with a large contact area between Al and CuO was fabricated in order to lower the exothermic reaction temperature and to improve the reactivity. A cryomilling process was performed to achieve the nanostructure, and the effect of composition on the microstructure and its reactivity was studied in detail. The microstructure was characterized using SEM and XRD, and the thermal property was analyzed using DSC. The results show that as the molar ratio between Al and CuO varies, the fraction of uniform nanocomposite structure was changed affecting the exothermic reaction characteristics.

PLC Aapplication in Exothermic Batch Process (Exothermic Batch 공정의 PLC 응용)

  • 김연태;김영권;임채환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.639-642
    • /
    • 1990
  • 본 EXOTHERMIC BATCH 공정은 두 개의 FLUID BED REACTOR로 구성되며 여기서 다종의 제품이 생산된다. 각 제품은 그 제품 자체의 특징 온도 패턴을 갖게 되며 허용한계를 벗어나지 않는 제품을 생산하기 위해서는 그 특징 온도 패턴대로 제어되어야 하며 실패할 경우 그 배치를 포기하여야만 한다. 초기의 배치제어시스템에서는 램프 제너레이터(RAMP GENERATOR) 기능이 있는 공기식 계기가 사용되었으며 제품을 변경하기 위해서는 각 제품마다 일일이 그 특징 패턴을 수동으로 입력시켜 주어야만 했다. 이 과정에서 한 개의 파라미터를 실수하면 사용할 수 없는 제품이 된다. 다종 제품의 화학공정에서는 품질과 생산량 향상에 의한 이득 증대에 그 목표를 두고 있으며, 이와 같은 목표를 달성하기 위한 해결책은 운전자의 개입을 감소시켜주는 제어시스템으로 개선하는 것이었다. 본 논문에서는 배치공정에 있어서의 프로그래머블 콘트롤러(PROGRAMMABLE CONTROLLER)의 응용에 관하여 논술하고자 한다.

  • PDF

Fabrication of Duplex Ceramic Composites by Organic-Inorganic Solution Process

  • Lee, Sang-Jin;Kim, Youn-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.837-841
    • /
    • 2003
  • Duplex microstructure of zirconia and alumina has been achieved via an organic-inorganic solution technique. Zirconium 2,4-pentanedionate, aluminum nitrate and polyethylene glycol were dissolved in ethyl alcohol without any precipitation. The organicinorganic precursor gels were turned to porous powders having volume expansion through explosive, exothermic reaction during drying process. The volume expansion was caused by abrupt decomposition of the organic groups in the gels during the vigorous exothermic reaction. The volume expanded, porous powders were crystallized and densified at 1500$^{\circ}C$ for 1 h. At the optimum amount of the PEG polymer, the metal cations were well dispersed in the solution and a homogeneous polymeric network was formed. The polymer content also affected on the specific surface area of the synthesized powder and the grain size of the sintered composite.

An Evaluation of Thermal Stability of Raw Materials in the Vinyl Acetate Polymerization Process (비닐아세테이트 중합공정에서 원료물질의 열적 안정성 평가)

  • Lee, Keun-Won;Han, In-Soo;Lee, Jung-Suk
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.61-65
    • /
    • 2010
  • Most of the chemical reactions performed in the chemical industry are exothermic, meaning that thermal energy is released during the reaction. It is also important to understand the thermal hazards such as thermal stabilities and runaway reactions, which are governed by thermodynamics and reaction kinetics of the mixed materials. The paper was described the evaluation of thermal behavior caused by an exothermic batch process in manufacture of the vinyl acetate resin. The aim of the study was to evaluate the thermal stabilities of raw materials with operating conditions such as a reaction inhibitor, heating rate, reaction atmosphere and the mount of methanol charged in the vinyl acetate polymerization process. The experiments were performed in the differential scanning calorimeter(DSC), C 80 calorimeter, and thermal screening unit($TS^u$). It was suggested that we should provide the thermal characteristics for raw materials to present safe precautions with operating conditions in the vinyl acetate polymerization process.

Frequency-dependent electrical properties of $C_22$ -quinolinium(TCNQ) langmuir-blodgett films (C$_22$ -quinolinium(TCNQ) LB막의 주파수에 따른 전기적 특성)

  • 김태완;이상국;신동명;강도열
    • Electrical & Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.151-157
    • /
    • 1995
  • Frequency-dependent electrical properties of $C_{22}$-Quinolinium(TCNQ) LB films were investigated in a frequency range of 10[Hz]-13[MHz] along a perpendicular direction. The films were heat-treated to understand an electrodynamic response in a temperature range of 20-240[.deg. C]. Frequencydependent dielectric constants show that there are two characteristic dispersions; one is a dispersion occuring near 1[MHz] coming from the orientational polarization of the molecules and the other one is an interfacial polarization effect below 1[kHz] or so when the annealing temperature is above 80 [.deg. C]. The overall frequency-dependent dielectric constant is higher near 80[.deg. C]. It may be due to a softness of the alkyl chains. Several other methods were employed to identify the internal structure change of the films. DSC(differential scanning calorimetry) data of the $C_{22}$-Quinolinium(TCNQ) molecules shows that there is an endothermic process near 110[.deg. C] and a weak exothermic process near 180[.deg. C]. While the endothermic process is related to a disordering of the alkyl chains, the exothermic process seems to be due to a chemical structure change of the TCNQ molecules. Thickness measurement by ellipsometry shows that there is a thickness drop near 100[.deg. C], and the thickness above 120[.deg. C] becomes around 20[%] of the room-temperature value.lue.

  • PDF

Carbonization Characteristics of Phenolic Resin Deteriorated by Tracking (트래킹에 의해 열화된 페놀수지의 탄화 특성)

  • 송길목;최충석;노영수;곽희로
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This paper describes the carbonization characteristics of a phenolic resin deteriorated by tracking under the environment of a fire. In the experiment, a liquids droplet of 1[%] NaCl was dripped on the phenolic resin to cause a tracking with 110[V], 220[V] voltages applied. It can be addressed from the experimental results that when an insulator is carbonized by an external fire, its structure is amorphous. If an insulator is carbonized by electrical cause, on the other hand, its structure would be crystalline. In order to observe the surface change of the phenolic resin, the tracking process was analyzed by using SEM. In the case that the materials are carbonized under heat or fire, the exothermic peak appears around 500[$^{\circ}C$]. This is one of the important factors to determine the cause of fires. As a result of DTA, the exothermic peaks of an untreated sample showed at 333.4[$^{\circ}C$], 495.7[$^{\circ}C$] but those of a sample deteriorated by tracking appeared at 430.6[$^{\circ}C$], 457.6[$^{\circ}C$] in a voltage of 110[V], and at 456.2[$^{\circ}C$], 619.7[$^{\circ}C$] in a voltage of 220[V]. It is possible, therefore, to distinguish a virgin sample from carbonized samples(graphite) by the exothermic peak.

Tuning Exothermic Curing Reaction of Hydrogenated Bisphenol A Epoxy Resins for Stone Conservation (석조문화재 보존.복원에 적용될 에폭시 수지의 경화 시 반응열 제어 및 안정성 향상 연구)

  • Choi, Yong-Seok;Park, You-Jin;Kang, Yong-Soo;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.131-139
    • /
    • 2012
  • The exothermic cure kinetics of epoxy resin was controlled by hardener containing fast and slow curing agents. The epoxy risen comprises hydrogenated bisphenol A-based epoxide (HBA), fast curing agent (FH) and slow curing agent poly(propyleneglycol)bis(2-aminopropylether) (SH). Talc was used as an inorganic additive. In the process of curing, cure kinetics along with temperature was monitored by differential scanning calorimeter (DSC) and thermocouple to show that the temperature increase was well controlled by adjusting the hardener mixture. Additionally, bending and tensile strengths of the epoxy/talc composites were also measured to be lower and higher with the amount of the talc inorganic additive, respectively. It is thus concluded that the increase in the temperature during exothermic curing reaction and mechanical properties of epoxy resins are tuned by optimizing hardener mixture for successful stone conservation.

Cure simulation for a thick glass/epoxy laminate (유리섬유 강화 후판 복합재료의 경화공정 해석)

  • 오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.53-58
    • /
    • 2000
  • During the curing process of thick glass/epoxy laminates, a substantial amount of temperature lag and overshoot at the center of the laminates is usually experienced due to the large thickness and low thermal conductivity of the glass/epoxy composites. Also, it requires a longer time for full and uniform consolidation. In this work, temperature, degree of cure and consolidation of a 20mm thick unidirectional glass/epoxy laminate were investigated using an experiment and a 3-dimentional numerical analysis considering the exothermic reaction. From the experimental and numerical results, it was found that the experimentally obtained temperature profile agreed well with the numerical one and the cure cycle recommended by the prepreg manufacturer should be modified to prevent a temperature overshoot and to obtain full consolidation.

  • PDF

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF