• Title/Summary/Keyword: exosome-like nanovesicles

Search Result 3, Processing Time 0.018 seconds

Study on Reinforcing Skin Barrier and Anti-aging of Exosome-like Nanovesicles Isolated from Malus domestica Fruit Callus (사과 캘러스로부터 분리된 엑소좀-유사 Nanovesicles 의 피부 장벽 및 피부 노화 방지 개선 연구)

  • Seo, Yu-Ri;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • Plant-derived exosome-like nanovesicles (PELNs) are known to include various biological activities and possess high biocompatibility. Because PELNs can influence immune responses, cell differentiation, and proliferation regulation, they can be applied in multiple industries. However, the studies on the skin physiological of exosome-like nanovesicles derived from plant callus are insignificant compared to nanovesicles derived from mammalian cells. In this study, callus was induced from apple fruit (Malus domestica), and exosome-like nanovesicles (ACELNs) were isolated for improving skin barrier and anti-aging. The yield of ACELNs was 6.42 × 109 particles/mL, and the particle size was ranged from 100 to 200 nm. HDF cells and HaCaT cells were concentration-dependent, increased in cell, and decreased in cytotoxicity. The cornified envelope formation was significantly increased compared to the control group. The COL1A1 expression and the FBN1 expression in HDF cells were increased. In addition, the ACELNs promoted collagen biosynthesis in UVA-irradiated HDF cells. These results might be considered as potential materials that could improve skin barrier and prevent skin aging.

The anti-cancer effect of pomegranate-derived nanovesicles on MDA-MB-231 breast cancer cells (MDA-MB-231 유방암 세포에서 석류 유래 나노베지클의 항암효과)

  • Dong-ha Kim;Ji-Su Kim;In-Sook Kwun;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.57 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Purpose: Cancer is the leading cause of death in Koreans, with breast cancer being the most common among women. Breast cancer readily metastasizes, and the existing treatment processes impose a significant burden on patients. This study examined whether pomegranate-derived exosome-like nanovesicles (PNVs) have anti-cancer effects by inhibiting cell infiltration and metastasis while increasing apoptosis on breast cancer MDA-MB-231 cells. Methods: Initially, exosome-like nanovesicles were isolated from pomegranate using ultracentrifugation. Subsequently, the size range of these nanovesicles was confirmed using nanoparticle tracking analysis. The ability of breast cancer MDA-MB-231 cells to internalize these natural nanovesicles was assessed with flourescence microscope. The anti-cancer effects of the PNVs were confirmed by applying various concentrations of PNVs (10, 50, 100 ㎍/mL) to MDA-MB-231 cells and systematically assessing their impact on cell viability and migration. Results: The round shape of the lipid bilayer in the PNVs was confirmed, providing crucial insights into their structural properties. We demonstrate that PNVs-associated DiD dye can be efficiently internalized by the MDA-MB-231 cells. The data showed that the PNVs inhibited cell viability, invasion rates, and migration in MDA-MB-231 cells. In addition, PNVs were absorbed into the MDA-MB-231 cells, leading to an increased expression of apoptosis proteins, such as cleaved caspase-3 and phosphorus-JNK, in a concentration-dependent manner. Furthermore, a reduction in cell infiltration and decreased expression of the transition markers MMP-2 and MMP-9 proteins were observed. Conclusion: For the first time, this study suggests that PNVs may be useful in the prevention or treatment of breast cancer by inhibiting the infiltration and metastasis of MDA-MB-231 cells and inducing apoptosis.

Skin Barrier Improvement Effect of Exosomal Nanovesicles Derived from Lactic Acid Bacteria (유산균 유래 엑소좀 유사 나노베지클의 피부 장벽 개선 효과)

  • Wang, Hyesoo;Lee, Kwang-Soo;Kang, Yong-Won
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.2
    • /
    • pp.171-178
    • /
    • 2021
  • In this study, exosomal-like nano-vesicles derived from probiotics were isolated and various physiological activities were evaluated on the skin. This study show that Lactococcus lactis subsp. lactis (LL) are incubated, and then isolated LL derived exosomal nanovesicles (LVs) at the range of 70 ~ 200 nm by high-pressure homogenizer and ultrafiltration. The vesicle numbers were an average of 1.81 × 1011 particles/mL. This study finds out the bacterial nanovesicles' beneficial effect on the skin. Fibrillin (FBN1) gene expression increased by 23% in fibroblast cells. Fibronectin (FN1) and filaggrin (FLG) gene expression increased by 65% and 400% in keratinocytes. We could see that cornified envelope (CE) formation ability was increased by 30% compared to the control group. Furthermore, collagen type I alpha 1 (COL1A1) protein expression increased by 83% compared to the UV-irradiated control group. These results suggest that LVs could help skin barrier improvement and used as an ingredient for cosmetics or pharmaceuticals.