• Title/Summary/Keyword: exopolymers

Search Result 6, Processing Time 0.025 seconds

Effect of Exopolymers of Aureobasidium pullulans on Improving Osteoporosis Induced in Ovariectomized Mice

  • SONG HEBOK;PARK DONG CHAN;DO GYUNG MIN;HWANG SEUNG-LARK;LEE WON KYU;KANG HEUN-SOO;PARK BOK-RYUN;JANG HEE-JEONG;SONG CHANG-WOO;PARK EUI KYUN;KIM SHIN-YOON;HUH TAE-LIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Treatment with exopolymers of Aureobasidium pullulans SM-2001 containing $\beta-1,3/1,6-glucan$ inhibited osteoclastogenesis of bone marrow stem cells in a co-culture system with calvariae osteoblastic cells. In addition, the treatment increased mineral deposition in osteoblastic cells. These two observations prompted us to evaluate whether the exopolymers could be used as an anti-osteoporotic agent, and efficacy of the exopolymers to prevent bone loss was compared with alendronate, a bisphosphonate, in ovariectomized mice prone to osteoporosis. Administration of the exopolymers to the ovariectomized mice resulted in improved effects on femur weight and histomorphometric changes of femur such as trabecular bone volume (TBV), trabecular bone thickness (TBT), and cortical bone thickness (CBT). In conclusion, the exopolymers treatment inhibited bone loss from osteoporosis induced by ovariectomy, and the effect was comparable to alendronate administration.

Immunomodulatory Effects of Aureobasidium pullulans SM-2001 Exopolymers on Cyclophosphamide-Treated Mice

  • Yoon, Hyun-Soo;Kim, Joo-Wan;Cho, Hyung-Rae;Moon, Seung-Bae;Shin, Hyun-Dong;Yang, Kun-Ju;Lee, Hyeung-Sik;Kwon, Young-Sam;Ku, Sae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.438-445
    • /
    • 2010
  • The immunomodulatory effects of Aureohasidium pullulans SM-2001 exopolymers containing $\beta$-1,3/1,6-glucan were evaluated in cyclophosphamide (CPA)-treated mice. To induce immunosuppression, 150 and 110 mg/kg of CPA were intraperitoneally injected 3 days and 1 day, respectively, before beginning administration of the test material. Exopolymers were delivered subcutaneously or orally, four times, in a volume of 10 ml/kg at 12-h intervals beginning 24 h after the second CPA treatment. Changes in thymus and spleen weights, splenic amounts of tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-$1{\beta}$, and IL-10, and numbers of CD3+, CD4+, CD8+, and TNF-$\alpha+$ thymus and spleen cells were monitored in CPA-treated mice. As a result of CPA treatment, dramatic decreases in the number of CD3+, CD4+, CD8+, and TNF-$\alpha+$ cells were detected in the thymus and spleen, along with decreases in thymus and spleen weights. In addition, splenic TNF-$\alpha$, IL-$1{\beta}$, and IL-10 contents were also decreased on observation with flow cytometry. However, oral and subcutaneous treatments with exopolymers effectively reduced the immunosuppressive changes induced by CPA. Therefore, it is concluded that exopolymers of A. pullulans SM-2001 can effectively prevent immunosuppression through, at least partially, the recruitment of T cells and TNF-$\alpha+$ cells or enhancement of their activity, and can provide an effective component of prevention or treatment regimens for immunosuppression related to cancer, sepsis, and high-dose chemotherapy or radiotherapy.

Effect of Exopolymers from Aureobasidium pullulans on Formalin-Induced Chronic Paw Inflammation in Mice

  • Kim, Hyeong-Dong;Cho, Hyung-Rae;Moon, Seung-Bae;Shin, Hyun-Dong;Yang, Kun-Ju;Park, Bok-Ryeon;Jang, Hee-Jeong;Kim, Lin-Su;Lee, Hyeung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1954-1960
    • /
    • 2006
  • The effects of the exopolymers of Aureobasidium pullulans SM-2001 containing $\beta$-1,3/1,6-glucan on formalin-induced chronic inflammation were observed. Doses of 62.5, 125, and 250 mg/kg of the exopolymers were orally administered once a day for 10 days to formalin-induced chronic inflammatory mice (0.02 ml of 3.75% formalin was subaponeurotically injected into the left hind paw), and then the bilateral hind-paw thickness and volume were measured daily, while the paw wet-weight, histological profiles, and histomorphometrical analyses were conducted at termination. The results were compared with those for diclofenac, indomethacin, and dexamethasone (intraperitoneally injected) 15 mg/kg-dosed groups. All the animals were sacrificed 10 days after dosing. As a result of the formalin injection, a marked increase in the difference between the intact and formalin-induced paw thickness and volume was detected in the formalin-injected control compared with that in the intact control with time, plus at the time of sacrifice, the difference in the paw wet-weights was also dramatically increased. In a histological and histomorphometrical analysis, severe histological profiles of chronic inflammation were detected in the formalin-injected control with a marked increase in the thickness of the skin of the dorsum pedis. However, these formalin-induced chronic inflammatory changes were significantly and dose-dependently decreased by the exopolymer treatment. In conclusion, the exopolymer treatment inhibited the chronic inflammatory response induced by formalin injection in the mice. However, somewhat low efficacies were detected compared with those for the diclofenac-, indomethacin-, and dexamethasone-treated groups.

Effect of volcanic ash on cell growth and production of exopolymers

  • Kim, Ji-Mo;Park, Hong-Gil;Jeong, Dae-Il;Kim, Gwang;Kim, Sang-Ok;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.342-345
    • /
    • 2000
  • Effect of volcanic ash on cell growth of Aspergillus sp. and production of exopolymers by Agrobacterium sp. and Aureobasidium pullualns was investigated. The volcanic ash contained various mineral salts such as $SiO_2$, $Al_2O_3$, CaO, $K_2O$. Maximal cell growth of Aspergillus sp. was obtained when 0.3% volcanic ash was added to medium. Cell growth of Aspergillus sp. increased with higher concentration of volcanic ash in medium. Amount of cell growth with 0.3 % volcanic ash was 6.7 times higher than that without volcanic ash. Volcanic ash also stimulated production of exopolymer as well as cell growth. Production of curdlan with 0.1% volcanic ash was 12.40 g/l whereas that without volcanic ash was 9.15 g/l. Production of pullulan with volcanic ash was also higher than that without volcanic ash.

  • PDF

Characteristics of Lead Removal by Methanotrophic Biomass (메탄자화균에 의한 납의 제거 특성)

  • 이무열;양지원
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.444-451
    • /
    • 2000
  • Nonliving methanotrophic biomass was used as biosorbent to remove lead which is one of representative pollutants in metal-bearing wastewater. Solution pH, maximum uptake, biosorbent dose and ionic strength were considered as major factors for adsorption experiments. The optimum pH range for lead removal was increased 3.8∼11.0 for methanotrophic biomass compared to biosorbent-free control, pH of 8.4∼11.2. Removal efficiency of lead by methanotrophic biomass was pH dependent, but less sensitive than that of control. In isotherm experiments with 0.2g biosorbent/L at initial solution pH 5.0, methanotrophic biomass took up lead from aqueous solutions to the extent of 1085 mg/g biomass. Removal amount of lead increased with an increase of biomass dose. According to biomass dose for initial 1000 mg Pb/L at initial pH 5.0, the optimum amount of biomass for maximum lead removal per unit methanotrophic biomass was 0.2 g biomass/L. As a result of scanning electron microscope (SEM) micrographs equipped with energy dispersive spectroscopy (EDS), lead removal by methanotrophic biomass seemed to be through adsorptions on the surface of methanotrophic biomass and exopolymers around the biomass. EDS spectra confirmed that lead adsorption appeared on the biomass and exopolymers that may be effective to lead removal comparing before and after contact with lead. Removal efficiency of lead was slightly affected by ionic strength up to 2.0 M of NaCl and NaNO$_3$respectively.

  • PDF

Synergic Effects of Mixed Formula Consisted of Polycan and Calcium-gluconate on the Experimental Periodontitis and Alveolar Bone Loss in Rats

  • Lee, Won-Ho;Kim, Kyung Hu;Kang, Su Jin;Lee, Young Joon;Ku, Sae Kwang
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.125-138
    • /
    • 2014
  • Objective : Polycan, exopolymers purified from Aureobasidium pullulans SM-2001 and calcium gluconate have been showed favorable inhibitory effects on the periodontitis and related alveolar bone losses through antioxidant and anti-inflammatory activities, respectively. In the present study, we intended to observe the possible synergic effects of mixed formula consisted of Polycan and calcium gluconate on ligation-induced experimental periodontitis and related alveolar bone losses in rats, and to select the fittest compositions for further developing as effective agents to ameliorate periodontal diseases. Method : Experiments were conducted as two separated two tests - first is synergic effects of Polycan and calcium gluconate 1:1, 1:9 and 9:1 mixtures, and second is 1:99, 2:98, 4:96, 8:92 and 1:9 mixtures. Experimental periodontal diseases were induced by ligature placed around the cervix of upper left incisior teeth of rats. One day after ligation placements, 200mg/kg of each single or mixed formulas of Polycan or/and calcium gluconate were orally administered for 10 days. The changes on the alveolar bone loss index and maxillary bone mineral density (BMD) were observed for detecting alveolar bone losses, and for anti-inflammatory effects, myeloperoxidase (MPO) activities and proinflammatory cytokine (tumor necrosis factor; TNF-${\alpha}$) contents were also evaluated in gingival tissues around ligature placed incisior teeth. The results of mixtures were compared with those of singe Polycan and calcium gluconate treated rat. Results : Each single or mixed formulas of Polycan or/and calcium gluconate favorably and significantly inhibited the inflammatory changes. The inhibitory effects of mixed formula consisted of Polycan and calcium gluconate 1:9 showed against periodontitis and related alveolar bone losses as compared with those of each Polycan and calcium gluconate single formula (p<0.05). In second experiment, Polycan and calcium gluconate 2:98, 4:96, 8:92 and 1:9 mixed formulas also showed significant increased anti-inflammatory and inhibitory effects against alveolar bone losses as compared with those of each single formula. Among them, Polycan and calcium gluconate 2:98 showed the highest efficacy against to ligation-induced experimental periodontitis and related alveolar bone losses. Conclusion : The results obtained in this study suggest that appropriated mixtures of Polycan and calcium gluconate showed synergic inhibitory effects against ligation-induced experimental periodontitis and related alveolar bone losses in rats. Moreover, Polycan and calcium gluconate 2:98 showed the highest efficacies in this experiment, suggesting the fittest composition for further developing as effective agents to ameliorate periodontal diseases.