• 제목/요약/키워드: exon 7

검색결과 174건 처리시간 0.027초

Investigation of PCR-RFLPs within Major Histocompatibility Complex B-G Genes Using Two Restriction Enzymes in Eight Breeds of Chinese Indigenous Chickens

  • Xu, R.F.;Li, K.;Chen, G.H.;Qiang, B.Y.Z.;Mo, D.L.;Fan, B.;Li, C.C.;Yu, M.;Zhu, M.J.;Xiong, T.A.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권7호
    • /
    • pp.942-948
    • /
    • 2005
  • New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a non-synonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variable-region-like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.

Hsa-miR-422a Originated from Short Interspersed Nuclear Element Increases ARID5B Expression by Collaborating with NF-E2

  • Kim, Woo Ryung;Park, Eun Gyung;Lee, Hee-Eun;Park, Sang-Je;Huh, Jae-Won;Kim, Jeong Nam;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제45권7호
    • /
    • pp.465-478
    • /
    • 2022
  • MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target messenger RNA (mRNA) complementary to the 3' untranslated region (UTR) at the post-transcriptional level. Hsa-miR-422a, which is commonly known as miRNA derived from transposable element (MDTE), was derived from short interspersed nuclear element (SINE). Through expression analysis, hsa-miR-422a was found to be highly expressed in both the small intestine and liver of crab-eating monkey. AT-Rich Interaction Domain 5 B (ARID5B) was selected as the target gene of hsa-miR-422a, which has two binding sites in both the exon and 3'UTR of ARID5B. To identify the interaction between hsa-miR-422a and ARID5B, a dual luciferase assay was conducted in HepG2 cell line. The luciferase activity of cells treated with the hsa-miR-422a mimic was upregulated and inversely downregulated when both the hsa-miR-422a mimic and inhibitor were administered. Nuclear factor erythroid-2 (NF-E2) was selected as the core transcription factor (TF) via feed forward loop analysis. The luciferase expression was downregulated when both the hsa-miR-422a mimic and siRNA of NF-E2 were treated, compared to the treatment of the hsa-miR-422a mimic alone. The present study suggests that hsa-miR-422a derived from SINE could bind to the exon region as well as the 3'UTR of ARID5B. Additionally, hsa-miR-422a was found to share binding sites in ARID5B with several TFs, including NF-E2. The hsa-miR-422a might thus interact with TF to regulate the expression of ARID5B, as demonstrated experimentally. Altogether, hsa-miR-422a acts as a super enhancer miRNA of ARID5B by collaborating with TF and NF-E2.

Lipoid Congenital Adrenal Hyperplasia Diagnosed in an Infant with Hyperpigmentation Only by Targeted Exome Sequencing

  • Kim, Jinsup;Yang, Aram;Jang, Ja-Hyun;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제3권1호
    • /
    • pp.28-32
    • /
    • 2017
  • Lipoid congenital adrenal hyperplasia (LCAH) is the severe form of congenital adrenal hyperplasia and is characterized by adrenal insufficiency with hyperpigmentation and female external genitalia irrespective of genetic sex. The steroidogenic acute regulatory protein (StAR) is required for the transport of cholesterol into the mitochondria for steroidogenesis, and defects in the StAR gene account for the majority of LCAH cases. In this report, we present a two-day-old hyperpigmented infant with phenotypical female genitalia. With consideration of the clinical and laboratory findings, the infant was suspected of having adrenal insufficiency due to LCAH and treated with glucocorticoid, mineralocorticoid, and sodium chloride. Karyotyping revealed 46, XY. Upon pelvis ultrasonography, adrenal hyperplasia with abdominal masses (thought to be the testicles) was reported. Molecular analysis with targeted exome sequencing revealed the homozygote mutation of c.772C>T ($p.Q258^*$) in exon 7 of the StAR gene. The early detection and treatment of adrenal insufficiency in infants with hyperpigmentation can prevent clinically apparent adrenal crises. During follow-up, the patient had a good clinical condition and maintained normal electrolyte and adrenocorticotropic hormone levels with medication.

Identification of the SNP (Single Nucleotide Polymorphism) for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4) in Korean Cattle

  • Oh, Dong-Yep;Lee, Yoon-Seok;La, Boo-Mi;Yeo, Jung-Sou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권7호
    • /
    • pp.913-920
    • /
    • 2012
  • In this study, we investigated the relationship between unsaturated fatty acids influencing beef flavor and four types of SNPs (c.280A>G, c.388G>A, c.408G>C and c.456A>G) located at exon 2, 3 and 4 of the FABP4 gene, which is a fatty acid binding protein 4 in Korean cattle (n = 513). When analyzing the relationship between single genotype, fatty acids and carcass trait, individuals of GG, GG, CC and GG genotypes that are homozygotes, had a higher content of unsaturated fatty acids and marbling scores than other genotypes (p<0.05). Then, haplotype block showed strong significant relationships not only with unsaturated fatty acids (54.73%), but also with marbling scores (5.82) in $ht1{\times}ht1$ group (p<0.05). This $ht1{\times}ht1$ group showed significant differences with unsaturated fatty acids and marbling scores that affected beef flavor in Korean cattle. Therefore, it can be inferred that the $ht1{\times}ht1$ types might be valuable new markers for use in the improvement of Korean cattle.

Genetic Variation in a DNA Double Strand Break Repair Gene in Saudi Population: A Comparative Study with Worldwide Ethnic Groups

  • Areeshi, Mohammed Yahya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7091-7094
    • /
    • 2013
  • DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

FSHR Gene Mutation and Its Effect on Litter Size in Pigs

  • Zhang, Shujun;Xiong, Yuanzhu;Den, Changyan;Xiao, Senmu;Xu, Jianxiang;Xia, Yu;Liu, Xiaohua;Wang, Chunfang;Sun, Shulin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권2호
    • /
    • pp.179-182
    • /
    • 2004
  • The polymorphism of the locus FSHRB in intron6-Exon7 of FSHR gene was investigated by PCR-RFLPs in Erhualian, Large White and Landrace${\times}$Large White; The association of polymorphism and litter size was analyzed by using SAS. The results showed that 1) the polymorphism of the locus FSHRB was significantly associated with litter size; 2) the total born number (TBN) and number born alive (NBA) of the sows with BB genotype were increased (p<0.05) with additive effects of 1.02-1.42 and 1.04-1.27 pigs per litter, respectively; 3) among the sows with genotype AA, AB or BB, there was an insignificant difference in born weight and weaning weight. This gene may be an effective potential tool used in conjunction with traditional selection methods.

Unusual Intronic Variant in GSTP1 in Head and Neck Cancer in Pakistan

  • Masood, Nosheen;Malik, Faraz Arshad;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1683-1686
    • /
    • 2012
  • In the present case control study mRNA expression of the GSTP1 gene, encoding a phase II enzyme that detoxifies via glutathione conjugation, was investigated using semiquantitative PCR followed by SSCP for 49 confirmed head and neck (HN) cancer and 49 control samples. It was found that GSTP1 was upregulated in significantly higher number of cancers (OR 4.2, 95% CI 1.2-15.3). Grade wise correlation was also observed with more up regulation in patients with more advanced grades of HN carcinomas. We also found that 5 patients showed variation in mRNA with a larger product size than expected. Sequencing revealed insertion of an intronic segment between the $6^{th}$ and $7^{th}$ exon of the GSTP1 gene. Germline screening was performed showing mobility shifts which suggested mutation at the DNA level resulting in intronic portion retention. This study is of prime importance for drug design and treatment selection to overcome increased resistance of HN cancers to drugs due to alteration in the GSTP1 gene.

Novel variants of IDS gene, c.1224_1225insC, and recombinant variant of IDS gene, c.418+495_1006+1304del, in Two Families with Mucopolysaccharidosis type II

  • Cheon, Chong Kun
    • Journal of Interdisciplinary Genomics
    • /
    • 제1권1호
    • /
    • pp.6-9
    • /
    • 2019
  • In this report, the phenotypes of three patients from two families with mucopolysaccharidosis type II (MPS II) are compared: a novel variant and recombinant variant of IDS gene. The results of urine in patients showed a pronounced increase in glycosaminoglycan excretion with decreased iduronate-2-sulfatase enzyme activity in leukocyte, leading to a diagnosis of MPS II. A patient has a novel variant with 1 bp small insertion, c.1224_1225insC in exon 9, which caused frameshifts with a premature stop codon, and two patients have a recombination variant, c.418+495_1006+1304del, leading to the loss of exons 4, 5, 6, and 7 in genomic DNA, which is relatively common in Korean patients. They had different phenotypes even in the same mutation. The patients have now been enzyme replacement therapy with a significant decrease in glycosaminoglycan excretion. Further study on residual enzyme activity, as well as experience with more cases, may shed light on the relationship between phenotypes in MPS II and gene mutations.

Whole-exome sequencing analysis in a case of primary congenital glaucoma due to the partial uniparental isodisomy

  • Zavarzadeh, Parisima Ghaffarian;Bonyadi, Morteza;Abedi, Zahra
    • Genomics & Informatics
    • /
    • 제20권3호
    • /
    • pp.28.1-28.7
    • /
    • 2022
  • We described a clinical, laboratory, and genetic presentation of a pathogenic variant of the CYP1B1 gene through a report of a case of primary congenital glaucoma and a trio analysis of this candidate variant in the family with the Sanger sequencing method and eventually completed our study with the secondary/incidental findings. This study reports a rare case of primary congenital glaucoma, an 8-year-old female child with a negative family history of glaucoma and uncontrolled intraocular pressure. This case's whole-exome sequencing data analysis presents a homozygous pathogenic single nucleotide variant in the CYP1B1 gene (NM_000104:exon3:c.G1103A:p.R368H). At the same time, this pathogenic variant was obtained as a heterozygous state in her unaffected father but not her mother. The diagnosis was made based on molecular findings of whole-exome sequencing data analysis. Therefore, the clinical reports and bioinformatics findings supported the relation between the candidate pathogenic variant and the disease. However, it should not be forgotten that primary congenital glaucoma is not peculiar to the CYP1B1 gene. Since the chance of developing autosomal recessive disorders with low allele frequency and unrelated parents is extraordinary in offspring. However, further data analysis of whole-exome sequencing and Sanger sequencing method were applied to obtain the type of mutation and how it was carried to the offspring.

Identification and structure of AIMP2-DX2 for therapeutic perspectives

  • Hyeon Jin Kim;Mi Suk Jeong;Se Bok Jang
    • BMB Reports
    • /
    • 제57권7호
    • /
    • pp.318-323
    • /
    • 2024
  • Regulation of cell fate and lung cell differentiation is associated with Aminoacyl-tRNA synthetases (ARS)-interacting multifunctional protein 2 (AIMP2), which acts as a non-enzymatic component required for the multi-tRNA synthetase complex. In response to DNA damage, a component of AIMP2 separates from the multi-tRNA synthetase complex, binds to p53, and prevents its degradation by MDM2, inducing apoptosis. Additionally, AIMP2 reduces proliferation in TGF-β and Wnt pathways, while enhancing apoptotic signaling induced by tumor necrosis factor-α. Given the crucial role of these pathways in tumorigenesis, AIMP2 is expected to function as a broad-spectrum tumor suppressor. The full-length AIMP2 transcript consists of four exons, with a small section of the pre-mRNA undergoing alternative splicing to produce a variant (AIMP2-DX2) lacking the second exon. AIMP2-DX2 binds to FBP, TRAF2, and p53 similarly to AIMP2, but competes with AIMP2 for binding to these target proteins, thereby impairing its tumor-suppressive activity. AIMP2-DX2 is specifically expressed in a diverse range of cancer cells, including breast cancer, liver cancer, bone cancer, and stomach cancer. There is growing interest in AIMP2-DX2 as a promising biomarker for prognosis and diagnosis, with AIMP2-DX2 inhibition attracting significant interest as a potentially effective therapeutic approach for the treatment of lung, ovarian, prostate, and nasopharyngeal cancers.