• 제목/요약/키워드: exon 2

Search Result 395, Processing Time 0.024 seconds

p53 Gene Mutation in Gastric Cancer Tissue (위암조직에서 p53 유전자의 돌연변이)

  • Ku, Ki-Beom;Park, Seong-Hoon;Cheong, Ho-Young;Lee, Myung-Hoon;Yu, Wan-Sik
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.214-220
    • /
    • 2006
  • Purpose: p53 is one of the most commonly mutated genes in human tumors. The aim of this study was to analyze p53 mutation in gastric cancer and its correlations with the clinicopathologic variables to clarify the usefulness of p53 mutation as a prognostic factor. Materials and Methods: Specimens from 331 patients with gastric cancer who underwent a gastrectomy between March 1999 and April 2001 at the Kyungpook National University Hospital were used. p53 gene mutations were assessed by using a polymerase chain-reaction single-strand conformation polymorphism (PCR-SSCP) analysis. The correlations between p53 gene mutation and clinocopathologic parameters were analyzed. Results: p53 mutations were found in 66 (19.9%) tumors. Among those 66 cases, mutations were seen in 23 tumors at axon 5, in 8 at exon 6, in 21 at exon 7, and in 17 at exon 8. Two mutations were shown in 3 tumors. Thiriy-six (23.1%) of 156 intestinal-type tumors and 19 (13.1%) of 145 diffuse-type tumors showed p53 gene mutation (P=0.007). The frequency of p53 gene mutation didn't show any significant differences according to age, sex, stage, location, or gross type. Exon 5 mutations showed more frequently in intestinal-type tumors than in diffuse-type tumors (9.7% vs. 2.8%, P=0.024), and p53 mutation were more frequent in lymph nodes metastasis group than lymph nodes non-metastasis group with statistical significance (25.0% vs 15.6%, P=0.034). The five-year survival rate showed no statistically significant difference with p53 mutation (P=0.704). Conclusion: p53 mutations assessed by PCR-SSCP had little value as a prognostic factor after gastrectomy in patients with gastric cancer.

  • PDF

RRM but not the Asp/Glu domain of hnRNP C1/C2 is required for splicing regulation of Ron exon 11 pre-mRNA

  • Moon, Heegyum;Jang, Ha Na;Liu, Yongchao;Choi, Namjeong;Oh, Jagyeong;Ha, Jiyeon;Kim, Hyeon Ho;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.641-646
    • /
    • 2019
  • The Ron proto-oncogene is a human receptor for macrophage-stimulating protein (MSP). The exclusion of exon 11 in alternative splicing generates ${\Delta}RON$ protein that is constitutively activated. Heterogenous ribonucleaoprotein (hnRNP) $C_1/C_2$ is one of the most abundant proteins in cells. In this manuscript, we showed that both hnRNP $C_1$ and $C_2$ promoted exon 11 inclusion of Ron pre-mRNA and that hnRNP $C_1$ and hnRNP $C_2$ functioned independently but not cooperatively. Moreover, hnRNP $C_1$ stimulated exon 11 splicing through intron 10 activation but not through intron 11 splicing. Furthermore, we showed that, whereas the RRM domain was required for hnRNP $C_1$ function, the Asp/Glu domain was not. In conclusion, hnRNP $C_1/C_2$ promoted exon 11 splicing independently by stimulating intron 10 splicing through RRM but not through the Asp/Glu domain.

Association of Two Polymorphisms of DNA Polymerase Beta in Exon-9 and Exon-11 with Ovarian Carcinoma in India

  • Khanra, Kalyani;Panda, Kakali;Bhattacharya, Chandan;Mitra, A.K.;Sarkar, Ranu;Bhattacharyya, Nandan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1321-1324
    • /
    • 2012
  • Background: DNA polymerase beta ($pol{\beta}$) is a key enzyme in the base excision repair pathway. It is 39kDa protein, with two subunits, one large subunit of 31 kDa having catalytic activity between exon V to exon XIV, and an 8 kDa smaller subunit having single strand DNA binding activity. Exons V to VII have double strand DNA binding activity, whereas exons VIII to XI account for the nucleotidyl transferase activity and exons XII to XIV the dNTP selection activity. Aim: To examine the association between $pol{\beta}$ polymorphisms and the risk of ovarian cancer, the present case control study was performed using 152 cancer samples and non-metastatic normal samples from the same patients. In this study, mutational analysis of $pol{\beta}$ genomic DNA was undertaken using primers from exons IX to XIV - the portion having catalytic activity. Results: We detected alteration in DNA polymerase beta by SSCP. Two specific heterozygous point mutations of $pol{\beta}$ were identified in Exon 9:486, A->C (polymorphism 1; 11.18%) and in Exon 11:676, A->C (polymorphism 2; 9.86%). The correlation study involving polymorphism 1 and 4 types of tissue showed a significant correlation between mucinous type with a Pearson correlation value of 4.03 (p=0.04). The association among polymorphism 2 with serous type and stage IV together have shown Pearson ${\chi}^2$ value of 3.28 with likelihood ratio of 4.4 (p=0.07) with OR =2.08 (0.3-14.55). This indicates that there is a tendency of correlation among polymorphism 2, serous type and stage IV, indicating a risk factor for ovarian cancer. Conclusion: Hence, the results indicate that there is a tendency for $pol{\beta}$ polymorphisms being a risk factor for ovarian carcinogenesis in India.

Comparison of Exon-boundary Old and Young Domains during Metazoan Evolution

  • Lee, Byung-Wook
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.131-135
    • /
    • 2009
  • Domains are the building blocks of proteins. Exon shuffling is an important mechanism accounting for combination of a limited repertoire of protein domains in the evolution of multicellular species. A relative excess of domains encoded by symmetric exons in metazoan phyla has been presented as evidence of exon shuffling, and symmetric domains can be divided into old and new domains by determining the ages of the domains. In this report, we compare the spread, versatility, and subcellular localization of old and new domains by analyzing eight metazoan genomes and their respective annotated proteomes. We found that new domains have been expanding as multicellular organisms evolved, and this expansion was principally because of increases in class 1-1 domains amongst several classes of domain families. We also found that younger domains have been expanding in membranes and secreted proteins along with multi-cellular organism evolution. In contrast, old domains are located mainly in nuclear and cytoplasmic proteins. We conclude that the increasing mobility and versatility of new domains, in contrast to old domains, plays a significant role in metazoan evolution, facilitating the creation of secreted and transmembrane multidomain proteins unique to metazoa.

Association between p53 Gene Variants and Oral Cancer Susceptibility in Population from Gujarat, West India

  • Patel, Kinjal R.;Vajaria, Bhairavi N.;Begum, Rasheedunnisa;Shah, Franky D.;Patel, Jayendra B.;Shukla, Shilin N.;Patel, Prabhudas S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1093-1100
    • /
    • 2013
  • Background: p53 gene variants i.e. 16 bp duplication in intron 3, Arg72Pro in exon 4 and G>A in intron 6 have been reported to modulate susceptibility to various malignancies. Therefore, the present study evaluated the role of these p53 polymorphisms in oral cancer susceptibility in a population from Gujarat, West India. Method: Genotype frequencies at the three p53 loci in 110 controls and 79 oral cancer cases were determined by the PCR-RFLP method. Results: Heterozygous individuals at exon 4 showed protection from developing oral cancer. Homozygous wild and heterozygous individuals at intron 3 and those heterozygous at exon 4 in combination appeared to be at lowered risk. Furthermore, carriers of the 16 bp duplication allele at intron 3, proline allele at exon 4 and G allele at intron 6 were protected from oral cancer development. Conclusion: p53 polymorphisms, especially Arg72Pro in exon 4 could significantly modify the risk of oral cancer development in Gujarat, West Indian population.

Polymorphisms of the Exons 13, 15 and 16 of Transferrin Gene in Cheju Horses (제주마 Transferrin Gene Exon 13, 15 및 16의 다형현상)

  • Kim, N.Y.;Lee, S.S.;Yang, Y.H.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.391-398
    • /
    • 2002
  • This study was conducted to determine the polymorphism of transferrin exons 13, 15 and 16 by Single-Strand Conformation Polymorphism(SSCP) analysis and to compare their genotypes of Cheju horse Group I (Cheju Institute), Cheju horse Group II (farms), and Thoroughbred (KRA). SSCP of transferrin exon 13, 15, and 16 showed two (A, B), three (A, B, C) and three (A, B, C) codominant alleles, respectively. The Group I and Thoroughbred showed the similar frequencies of allele A and B in transferrin exon 13, but only allele A was observed in Group Ⅱ. In transferrin exons 15 and 16, the frequencies of each allele were different in each Groups. The multiple allele frequencies in exons 15 and 16 suggested that the genotyping of this locus could be used to identify an individual and to test the parentage of offspring. The probability for parentage exclusion were 0.46 and 0.374 for exons 15 and 16 for Cheju horse Group I. Among the 13 combined genotypes of exons 13, 15 and 16, the genotype AA-AB-AB (0.372) is the most common in Cheju horse Group I, but genotype AA-AA-AA is common in the Cheju horse Group II (0.366) and Thoroughbred (0.767). The present study showed two new SNP, which was at the cDNA position 1626 (A/G) in B allele of the exon 13 and 2075 (C/T) in C allele of the exon 16 resulting in amino acid change (Threonine $\longrightarrow$ Methionine). Result showed that polymorphism of exons 13, 15 and 16 in Cheju horses was as high as in Thoroughbred and there was a differences of transferrin allele frequencies in Cheju horses.

Role of MYH Polymorphisms in Sporadic Colorectal Cancer in China: A Case-control, Population-based Study

  • Yang, Liu;Huang, Xin-En;Xu, Lin;Zhou, Jian-Nong;Yu, Dong-Sheng;Zhou, Xin;Li, Dong-Zheng;Guan, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6403-6409
    • /
    • 2013
  • Purpose: Biallelic germline variants of the 8-hydroxyguanine (8-OG) repair gene MYH have been associated with colorectal neoplasms that display somatic $G:C{\rightarrow}T:A$ transversions. However, the effect of single germline variants has not been widely studied, prompting the present investigation of monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC) in a Chinese population. Patients and Methods: Between January 2006 and December 2012, 400 cases of sporadic CRC and 600 age- and sex-matched normal blood donors were screened randomly for 7 potentially pathogenic germline MYH exons using genetic testing technology. Variants of heterozygosity at the MYH locus were assessed in both sporadic cancer patients and healthy controls. Univariate and multivariate analyses were performed to determine risk factors for cancer onset. Results: Five monoallelic single nucleotide polymorphisms (SNPs) were identified in the 7 exon regions of MYH, which were detected in 75 (18.75%) of 400 CRC patients as well as 42 (7%) of 600 normal controls. The region of exon 1 proved to be a linked polymorphic region for the first time, a triple linked variant including exon 1-316 $G{\rightarrow}A$, exon 1-292 $G{\rightarrow}A$ and intron 1+11 $C{\rightarrow}T$, being identified in 13 CRC patients and 2 normal blood donors. A variant of base replacement, intron 10-2 $A{\rightarrow}G$, was identified in the exon 10 region in 21 cases and 7 controls, while a similar type of variant in the exon 13 region, intron 13+12 $C{\rightarrow}T$, was identified in 8 cases and 6 controls. Not the only but a newly missense variant in the present study, p. V463E (Exon 14+74 $T{\rightarrow}A$), was identified in exon 14 in 6 patients and 1 normal control. In exon 16, nt. 1678-80 del GTT with loss of heterozygosity (LOH) was identified in 27 CRC cases and 26 controls. There was no Y165C in exon 7 or G382D in exon 14, the hot-spot variants which have been reported most frequently in Caucasian studies. After univariate analysis and multivariate analysis, the linked variant in exon 1 region (p=0.002), intron 10-2 $A{\rightarrow}G$ (p=0.004) and p. V463E (p=0.036) in the MYH gene were selected as 3 independent risk factors for CRC. Conclusions: According to these results, the linked variant in Exon 1 region, Intron 10-2 $A{\rightarrow}G$ of base replacement and p. V463E of missense variant, the 3 heterozygosity variants of MYH gene in a Chinese population, may relate to the susceptibility to sporadic CRC. Lack of the hot-spot variants of Caucasians in the present study may due to the ethnic difference in MYH gene.

The Exon 2 Deletion of the COMMD1 Causing Copper Toxicosis in Bedlington Terriers in Korea (한국 베들링턴 테리어에서 구리중독증을 유발하는 COMMD1 유전자의 exon 2 결손변이)

  • Kim, Yun-Gi;Kim, So-Yeon;Yun, Young-Min
    • Journal of Veterinary Clinics
    • /
    • v.32 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • This study was performed to survey prevalence of Copper metabolism domain containing 1 (COMMD1) mutation using molecular diagnostic method in a population of Bedlington terriers in Korea. COMMD1 gene (formerly MURR1) functions as a regulator of sodium transport and copper metabolism. The deletion of exon 2 of the COMMD1 gene causes copper toxicosis in Bedlington terriers. Bedlington terriers with this autosomal recessive disorder were shown to have the elevated liver copper levels due to genetic derangement in the biliary copper excretion pathway. DNA samples were extracted from whole blood collected from 257 Bedlington terriers (109 males, 148 females) of pet dog clubs in Korea. A multiplex PCR was carried out to detect of exon 2 deletion of COMMD1 gene. In this study, it was possible to know the existence and prevalence of exon 2 deletion of COMMD1 in Bedlington terriers in Korea. Of the 257 samples, 131 (51%) were wild type homozygous for the normal COMMD1 gene, 108 (42%) were heterozygous, having both normal and mutated copy of the COMMD1 gene. The eighteen (7%) were mutant type homozygous. The results of genetic analysis could help establish proper management strategy and selective breeding program to prevent COMMD1 mutation in Bedlington terriers in Korea.

A cDNA Clone for the 5' Exon of Chloroplast ATP Synthase Subunit I Gene (atpF) from Broccoli (Brassica oleracea L. var. Italica) and Its Expression Pattern

  • Choo Bong Hong
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.137-141
    • /
    • 1995
  • We isolated a cDNA clone, BLSC1, encoding 5' exon of ATP synthase CF0 subunit I from broccoli. BLSC1 is 285 nucleotides long which consists of a 5' noncoding region of 34 nucleotides, a 5' exon of 145 nucleotides and an intron of 106 nucleotides. The 5' exon codes for 48 amino acids which reveals mostly hydrophobic. The amino acid sequence deduced from BLSC1 shares 83%, 83% and 91% identities with the genes coding for atpF from wheat, rice and spinach, respectively. Genomic Southern blot analysis for BLSC1 showed a typically strong signal for a gene located in the chloroplast genome. Northern blot analysis identified three major classes of transcripts showing strong positive signals in the leaves, but only trace amounts of the transcripts were identified in the other organs like stems, flowr buds and roots.

  • PDF

Gene Therapy of Inherited Muscle Diseases (유전성 근육질환의 유전자 치료)

  • Shin, Jin-Hong
    • Annals of Clinical Neurophysiology
    • /
    • v.14 no.2
    • /
    • pp.53-58
    • /
    • 2012
  • For the last decades, molecular genetics has achieved great advances that the genes on the list of inherited muscle diseases are piling up. Those diseases of overlapping clinico-pathologic findings are now understood with discrete molecular pathogeneses. We are facing an exciting era that the long-waited gene therapy may eventually come true. Skipping of dystrophin exon 51 is on successful clinical trials, which will benefit about 13% of the children suffering from Duchenne muscular dystrophy. Exon skipping is under active investigation to expand the candidates. Hopefully it may cover majority of Duchenne muscular dystrophy mutations and some of other diseases. Adeno-associated virus is one of the most versatile tools for gene transfer. It may overcome the limitation of exon skipping. Here we review exon skipping technique of Duchenne muscular dystrophy and briefly discuss the other strategies being studied to cure inherited muscle diseases.