• Title/Summary/Keyword: exon

Search Result 596, Processing Time 0.022 seconds

A Novel COMP Gene Mutation in a Korean Kindred with Multiple Epiphyseal Dysplasia

  • Ko, Jung-Min;Kwack, Kyu-Sung;Baek, Kum-Nyeo;Cho, Dae-Yeon;Kim, Hyon-Ju
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • Multiple epiphyseal dysplasia (MED) is a clinically and genetically heterogeneous chondroplasia, characterized by delayed development of the ossification centers and, deformities of the extremities that involve only the epiphysis and result in mild short stature. Mutations in the cartilage oligomeric matrix protein (COMP) gene are most commonly found, and most of the mutations are located in the calmodulin-like repeats and the C-terminal domain. We report a Korean kindred of 12 family members with MED in four generations who were found to have a novel mutation in the COMP gene. A pedigree showed early onset osteoarthritis requiring arthroplasty that was an autosomal dominant inherited trait. Radiological examinations demonstrated the presence of osteochondral defects in the medial femoral condyles, and the knee and hip joints showed variable degrees of precocious degenerative changes. Mutation analysis of the COMP gene in the proband and five other affected family members identified a novel missense mutation, c.1280G>C (p.Gly427Ala) in exon 12, which was not found in three unaffected family members. Direct sequencing of the COMP gene may yield pathogenic mutations in dominantly inherited MED cases, and may provide opportunities of carrier detection among high-risk family members, leading to genetic counseling for early diagnosis and intervention before the onset of complications.

  • PDF

Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia

  • Chaudhary, Ajay K;Chaudhary, Shruti;Ghosh, Kanjaksha;Shanmukaiah, Chandrakala;Nadkarni, Anita H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1519-1529
    • /
    • 2016
  • Background: Matrix metalloproteinase -2 (gelatinase-A, Mr 72,000 type IV collagenase, MMP-2) and -9 (gelatinase-B, Mr 92,000 type IV collagenase, MMP-9) are key molecules that play roles in tumor growth, invasion, tissue remodeling, metastasis and stem-cell regulation by digesting extracellular matrix barriers. MMP-2 and -9 are well known to impact on solid cancer susceptibility, whereas, in hematological malignancies, a paucity of data is available to resolve the function of these regulatory molecules in bone marrow mononuclear cells (BM-MNCs) and stromal cells of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Objectives: The present study aimed to investigate mRNA expression and gelatinase A and B secretion from BM-MNCs in vitro and genotypic associations of MMP-2 (-1306 C/T; rs243865), MMP-9 (-1562 C/T; rs3918242), tissue inhibitor of metalloproteinase -1 (TIMP-1) (372T/C; rs4898, Exon 5) and TIMP-2 (-418G/C; rs8179090) in MDS and AML. Results: The study covered cases of confirmed MDS (n=50), AML (n=32) and healthy controls (n=110). MMP-9 mRNA expression revealed 2 fold increased expression in MDS-RAEB II and 2.5 fold in AML M-4 (60-70% blasts). Secretion of gelatinase-B also revealed the MMP-9 mRNA expression and ELISA data also supported these data. We noted that those patients having more blast crises presented with more secretion of MMP-9 and its mRNA expression. In contrast MMP-9 (-1562 C/T) showed significant polymorphic associations in MDS (p<0.02) and AML (p<0.02). MMP-9 mRNA expression of C/T and T/T genotypes were 1.5 and 2.5 fold increased in MDS and AML respectively. In AML, MMP-2 C/T and T/T genotypes showed 2.0 fold mRNA expression. Only MMP-9 (-1306 C/T) showed significant 4 fold (p<0.001) increased risk with chemical and x-ray exposed MDS, while tobacco and cigarette smokers have 3 fold (p<0.04) risk in AML. Conclusions: In view of our results, MMP-9 revealed synergistic secretion and expression in blast crises of MDS and AML with 'gene' polymorphic effects and is significantly associated with increased risk with tobacco, cigarette and environmental exposure. Release and secretion of these enzymes may influence hematopoietic cell behavior and may be important in the clinical point of view. It may offer valuable tools for diagnosis and prognosis, as well as possible targets for the treatments.

Novel Nonsense Variants c.58C>T (p.Q20X) and c.256G>T (p.E85X) in the CHEK2 Gene Identified dentified in Breast Cancer Patients from Balochistan

  • Baloch, Abdul Hameed;Khosa, Ahmad Nawaz;Bangulzai, Nasrullah;Shuja, Jamila;Naseeb, Hafiz Khush;Jan, Mohammad;Marghazani, Illahi Bakhsh;Kakar, Masood-ul-Haq;Baloch, Dost Mohammad;Cheema, Abdul Majeed;Ahmad, Jamil
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1089-1092
    • /
    • 2016
  • Breast cancer is the most commonly occurring and leading cause of cancer deaths among women globally. Hereditary cases account 5-10% of all the cases and CHEK2 is considered as a moderate penetrance breast cancer risk gene. CHEK2 plays a crucial role in response to DNA damage to promote cell cycle arrest and repair DNA damage or induce apoptosis. Our objective in the current study was to analyze mutations in the CHEK2 gene related to breast cancer in Balochistan. A total of 271 individuals including breast cancer patients and normal subjects were enrolled. All 14 exons of CHEK2 were amplified and sequenced. The majority of the patients (>95%) had invasive ductal carcinomas (IDCs), 52.1% were diagnosed with tumor grade III and 56.1% and 27.5% were diagnosed with advance stages III and IV. Two novel nonsense variants i.e. c.58C>T (P.Q20X) and c.256G>T (p.E85X) at exon 1 and 2 in two breast cancer patients were identified in the current study. Both the variants identified were novel and have not been reported elsewhere.

HOXA9 is Underexpressed in Cervical Cancer Cells and its Restoration Decreases Proliferation, Migration and Expression of Epithelial-to-Mesenchymal Transition Genes

  • Alvarado-Ruiz, Liliana;Martinez-Silva, Maria Guadalupe;Torres-Reyes, Luis Alberto;Pina-Sanchez, Patricia;Ortiz-Lazareno, Pablo;Bravo-Cuellar, Alejandro;Aguilar-Lemarroy, Adriana;Jave-Suarez, Luis Felipe
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1037-1047
    • /
    • 2016
  • HOX transcription factors are evolutionarily conserved in many different species and are involved in important cellular processes such as morphogenesis, differentiation, and proliferation. They have also recently been implicated in carcinogenesis, but their precise role in cancer, especially in cervical cancer (CC), remains unclear. In this work, using microarray assays followed by the quantitative polymerase chain reaction (qPCR), we found that the expression of 25 HOX genes was downregulated in CC derived cell lines compared with non-tumorigenic keratinocytes. In particular, the expression of HOXA9 was observed as down-modulated in CC-derived cell lines. The expression of HOXA9 has not been previously reported in CC, or in normal keratinocytes of the cervix. We found that normal CC from women without cervical lesions express HOXA9; in contrast, CC cell lines and samples of biopsies from women with CC showed significantly diminished HOXA9 expression. Furthermore, we found that methylation at the first exon of HOXA9 could play an important role in modulating the expression of this gene. Exogenous restoration of HOXA9 expression in CC cell lines decreased cell proliferation and migration, and induced an epithelial-like phenotype. Interestingly, the silencing of human papilloma virus (HPV) E6 and E7 oncogenes induced expression of HOXA9. In conclusion, controlling HOXA9 expression appears to be a necessary step during CC development. Further studies are needed to delineate the role of HOXA9 during malignant progression and to afford more insights into the relationship between downmodulation of HOXA9 and viral HPV oncoprotein expression during cercical cancer development.

Prognostic Significance of CD44v6/v7 in Acute Promyelocytic Leukemia

  • Chen, Ping;Huang, Hui-Fang;Lu, Rong;Wu, Yong;Chen, Yuan-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3791-3794
    • /
    • 2012
  • CD44v, especially splice variants containing exon v6, has been shown to be related closely to development of different tumors. High levels of CD44v6/v7 have been reported to be associated with invasiveness and metastasis of many malignancies. The objective of this study was to detect expression of CD44v6-containing variants in patients with acute promyelocytic leukemia (APL) and evaluate the potential of CD44v6/v7 for risk stratification. Reverse transcription polymerase chain reaction (RT-PCR) followed by PCR product purification, ligation into T vectors and positive clone sequencing were used to detect CD44 v6-containing variant isoforms in 23 APL patients. Real-time quantitative PCR of the CD44v6/v7 gene was performed in patients with APL and in NB4 cells that were treated with all-trans retinoic acid (ATRA) or arsenic trioxide ($As_2O_3$). Sequencing results identified four isoforms (CD44v6/v7, CD44v6/v8/v10, CD44v6/v8/v9/v10, and CD44v6/v7/v8/v9/v10) in bone marrow mononuclear cells of 23 patients with APL. The level of CD44v6/v7 in high-risk cases was significantly higher than those with low-risk. Higher levels of CD44v6/v7 were found in three patients with central nervous system relapse than in other patients inthe same risk group. Furthermore, in contrast to ATRA, only $As_2O_3$ could significantly down-regulate CD44v6/v7 expression in NB4 cells. Our data suggest that CD44v6/v7 expression may be a prognostic indicator for APL.

Association between Circulating Vitamin D, the Taq1 Vitamin D Receptor Gene Polymorphism and Colorectal Cancer Risk among Jordanians

  • Atoum, Manar Fayiz;Tchoporyan, Melya Nizar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7337-7341
    • /
    • 2014
  • Background: The physiological role of vitamin D extends beyond bone health and calcium-phosphate homeostasis to effects on cancer risk, mainly for colorectal cancer. Vitamin D may have an anticancer effect in colorectal cancer mediated by binding of the active form $1,25(OH)_2D$ to the vitamin D receptor (VDR). The Taq1 VDR gene polymorphism, a C-to-T base substitution (rs731236) in exon 9 may influence its expression and function. The aim of this study wass to determine the 25(OH)D vitamin D level and to investigate the association between circulating vitamin D level and Taq1VDR gene polymorphism among Jordanian colorectal cancer patients. Materials and Methods: This case control study enrolled ninety-three patients and one hundred and two healthy Jordanian volunteers from AL-Basheer Hospital/Amman (2012-2013). Ethical approval and signed consent forms were obtained from all participants before sample collection. 25(OH)D levels were determined by competitive immunoassay Elecsys (Roche Diagnostic, France). DNA was extracted (Promega, USA) and amplified by PCR followed by VDR Taq1 restriction enzyme digestion. The genotype distribution was evaluated by paired t-test and chi-square. Comparison between vitamin D levels among CRC and control were assessed by odds ratio with 95% confidence interval. Results: The vitamin D serum level was significantly lower among colorectal cancer patients (8.34 ng/ml) compared to the healthy control group (21.02ng/ml). Patients deficient in vitamin D (less than 10.0 ng/ml) had increased colorectal cancer risk 19.2 fold compared to control. Only 2.2% of CRC patients had optimal vitamin D compared to 23.5% among healthy control. TT, Tt and tt Taq1 genotype frequencies among CRC cases was 35.5%, 50.5% and 14% compared to 43.1%, 41.2% and 15.7% among healthy control; respectively. CRC patients had lower mean vitamin D level among TT ($8.91{\pm}4.31$) and Tt ($9.15{\pm}5.25$) genotypes compared to control ($21.3{\pm}8.31$) and ($19.3{\pm}7.68$); respectively. Conclusions: There is significant association between low 25(OH)D serum level and colorectal cancer risk. The VDRTaq1 polymorphism was associated with increased colorectal cancer risk among patient with VDRTaq1 TT and Tt genotypes. Understanding the functional mechanism of VDRTaq1 TT and Tt may provide a strategy for colorectal cancer prevention and treatment.

Cloning and Expression of the Cyclooxygenase-2 gene in the Rock bream, Oplegnathusfasciatus (돌돔, Oplegnathus fasciatus의 Cyclooxygenase-2 유전자의 cloning 및 발현분석)

  • Jin, Ji Woong;Kim, Do Hyung;Kim, Young Chul;Jeong, Hyun Do
    • Journal of fish pathology
    • /
    • v.26 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Megalocytivirus is a major fish pathogen in marine aquaculture of Asian countries including Korea. Despite of many species affected by this pathogen, little is known interaction between megalocytivirus and the fish immune system. One of the cyclooxygenase isoforms, named COX-2, is playing an important role in immune regulation, and distinct from COX-1 isoform of constitutive activity. COX-2 enzyme is induced by various inflammatory signals, including injection of lipopolysaccharide or infection by pathogenic agents. We cloned COX-2 gene in rock bream using degenerated primers designed from reported sequences of other fish species in PCR followed with 5'- and 3'-end RACE-PCR. The full length of cDNA of rbCOX2 (rock bream COX-2) gene are 2655 bp and that translates into 609 amino acids. The rbCOX-2 genomic organization are found to span 10 exons separated by 9 introns. We also studied if the experimental infection of rock bream with megalocytivirus could affect the expression of COX-2 gene. When injected with LPS, expression of the COX-2 gene was reached peak level at 1 day post injection and showed 13.10 fold increased level compared with that of control. While, when injected with megalocytivirus, we were not able to find significantly increased COX-2 gene expression different from that of control. Cloned and analyzed COX-2 gene in rock bream will help to understand defence mechanisms in fish after viral infection and will also support the development of the measures for treatment and prevention of viral infection.

Novel Polymorphisms of Adrenergic, Alpha-1B-, Receptor and Peroxisome Proliferator-activated Receptor Gamma, Coactivator 1 Beta Genes and Their Association with Egg Production Traits in Local Chinese Dagu Hens

  • Mu, F.;Jing, Y.;Qin, N.;Zhu, H.Y.;Liu, D.H.;Yuan, S.G.;Xu, R.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1256-1264
    • /
    • 2016
  • Adrenergic, alpha-1B-, receptor (ADRA1B) and peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B) genes are involved in regulation of hen ovarian development. In this study, these two genes were investigated as possible molecular markers associated with hen-housed egg production, egg weight (EW) and body weight in Chinese Dagu hens. Samples were analyzed using the polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) technique, followed by sequencing analysis. Two novel single nucleotide polymorphisms (SNPs) were identified within the candidate genes. Among them, an A/G transition at base position 1915 in exon 2 of ADRA1B gene and a T/C mutation at base position 6146 in the 3'- untranslated region (UTR) of PPARGC1B gene were found to be polymorphic and named SNP A1915G and T6146C, respectively. The SNP A1915G (ADRA1B) leads to a non-synonymous substitution (aspartic acid 489-to-glycine). The 360 birds from the Dagu population were divided into genotypes AA and AG, allele A was found to be present at a higher frequency. Furthermore, the AG genotype correlated with significantly higher hen-housed egg production (HHEP) at 30, 43, 57, and 66 wks of age and with a higher EW at 30 and 43 wks (p<0.05). For the SNP T6146C (PPARGC1B), the hens were typed into TT and TC genotypes, with the T allele shown to be dominant. The TC genotype was also markedly correlated with higher HHEP at 57 and 66 wks of age and EW at 30 and 43 wks (p<0.05). Moreover, four haplotypes were reconstructed based on these two SNPs, with the AGTC haplotype found to be associated with the highest HHEP at 30 to 66 wks of age and with higher EW at 30 and 43 wks (p<0.05). Collectively, the two SNPs identified in this study might be used as potential genetic molecular markers favorable in the improvement of egg productivity in chicken breeding.

Tissues Expression, Polymorphisms Identification of FcRn Gene and Its Relationship with Serum Classical Swine Fever Virus Antibody Level in Pigs

  • Liu, Yang;Wang, Chonglong;Liu, Zhengzhu;Xu, Jingen;Fu, Weixuan;Wang, Wenwen;Ding, Xiangdong;Liu, Jianfeng;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1089-1095
    • /
    • 2012
  • Neonatal Fc receptor (FcRn) gene encodes a receptor that binds the Fc region of monomeric immunoglobulin G (IgG) and is responsible for IgG transport and stabilization. In this report, the 8,900 bp porcine FcRn genomic DNA structure was identified and putative FcRn protein included 356 amino acids. Alignment and phylogenetic analysis of the porcine FcRn amino acid sequences with their homologies of other species showed high identity. Tissues expression of FcRn mRNA was detected by real time quantitative polymerase chain reaction (Q-PCR), the results revealed FcRn expressed widely in ten analyzed tissues. One single nucleotide polymorphism (SNP) (HQ026019:g.8526 C>T) in exon6 region of porcine FcRn gene was demonstrated by DNA sequencing analysis. A further analysis of SNP genotypes associated with serum Classical Swine Fever Virus antibody (anti-CSFV) concentration was performed in three pig populations including Large White, Landrace and Songliao Black pig (a Chinese indigenous breed). Our results of statistical analysis showed that the SNP had a highly significant association with the level of anti-CSFV antibody (At d 20; At d 35) in serum (p = 0.008; p = 0.0001). Investigation of expression and polymorphisms of the porcine FcRn gene will help us in further understanding the molecular basis of the antibody regulation pathway in the porcine immune response. All these results indicate that FcRn gene might be regarded as a molecular marker for genetic selection of anti-CSFV antibody level in pig disease resistance breeding programmes.

Alternative Messenger RNA Splicing of Autophagic Gene Beclin 1 in Human B-cell Acute Lymphoblastic Leukemia Cells

  • Niu, Yu-Na;Liu, Qing-Qing;Zhang, Su-Ping;Yuan, Na;Cao, Yan;Cai, Jin-Yang;Lin, Wei-Wei;Xu, Fei;Wang, Zhi-Jian;Chen, Bo;Wang, Jian-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2153-2158
    • /
    • 2014
  • Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.