• 제목/요약/키워드: exoglucanase

검색결과 25건 처리시간 0.025초

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권12호
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

종이의 산성화가 미생물의 분해능에 미치는 영향 (Effect of the paper acidity on the cellulolytic activity of fungi)

  • 한성희;이규식;정용재;이혜윤
    • 보존과학연구
    • /
    • 통권19호
    • /
    • pp.3-22
    • /
    • 1998
  • The effect of pH on degradation of paper by some fungi, which able to degrade cellulose, was investigated. Trichoderma koningii, Aspergillus nigerand Penicillium nigulosum were cultured at $28^{\circ}C$ for 16 days in the selective medium (PH3, PH4, PH5, PH6, PH7, PH8, PH9, PH10, PHC) containing paper as substrate. Each paper was pretreated with each pH buffer (pH 3∼pH 10, D.W.)prior to addition to the selective medium. Enzyme activities in the each culture medium were measured spectroph to metrically using C.M.C., Avicel, PNPG as the substrates for endoglucanase, exoglucanase and $\beta$-glucosidase, respectively. In all experimental fungi, the enzyme activities of PH3 and PH9 medium were usually much higher than those of other experimental groups. However in the PH6medium, enzyme activity was lower than other groups. To analyze the concentration and pattern of protein in the each culture medium, the medium was concentrated by lyophilization. The protein concentration of PH3 and PH9 medium were relatively high (T.koningii; 6.31mg, 6,19mg, A.niger; 1.62mg, 1.96mg, P.nigulosum;2.50mg, 2.73mg, respectively), but that of PH6 was relatively low. The protein pattern of each medium was analyzed by using SDS-PAGE and VDS Image Master Analysis Program. The concentrations of bands in the each lane were usually high at lane2 (PH3) and lane8 (PH9) and low at lane5 (PH6). Therefore, the incresed cellulolytic activity of fungus against acidified paper could be result of structural change and deterioration of paper caused by being acidified.

  • PDF

Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Chen, Beibei;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1123-1133
    • /
    • 2021
  • Biodegradation is the key process involved in natural lignocellulose biotransformation and utilization. Microbial consortia represent promising candidates for applications in lignocellulose conversion strategies for biofuel production; however, cooperation among the enzymes and the labor division of microbes in the microbial consortia remains unclear. In this study, metagenomic analysis was performed to reveal the community structure and extremozyme systems of a lignocellulolytic microbial consortium, TMC7. The taxonomic affiliation of TMC7 metagenome included members of the genera Ruminiclostridium (42.85%), Thermoanaerobacterium (18.41%), Geobacillus (10.44%), unclassified_f__Bacillaceae (7.48%), Aeribacillus (2.65%), Symbiobacterium (2.47%), Desulfotomaculum (2.33%), Caldibacillus (1.56%), Clostridium (1.26%), and others (10.55%). The carbohydrate-active enzyme annotation revealed that TMC7 encoded a broad array of enzymes responsible for cellulose and hemicellulose degradation. Ten glycoside hydrolases (GHs) endoglucanase, 4 GHs exoglucanase, and 6 GHs β-glucosidase were identified for cellulose degradation; 6 GHs endo-β-1,4-xylanase, 9 GHs β-xylosidase, and 3 GHs β-mannanase were identified for degradation of the hemicellulose main chain; 6 GHs arabinofuranosidase, 2 GHs α-mannosidase, 11 GHs galactosidase, 3 GHs α-rhamnosidase, and 4 GHs α-fucosidase were identified as xylan debranching enzymes. Furthermore, by introducing a factor named as the contribution coefficient, we found that Ruminiclostridium and Thermoanaerobacterium may be the dominant contributors, whereas Symbiobacterium and Desulfotomaculum may serve as "sugar cheaters" in lignocellulose degradation by TMC7. Our findings provide mechanistic profiles of an array of enzymes that degrade complex lignocellulosic biomass in the microbial consortium TMC7 and provide a promising approach for studying the potential contribution of microbes in microbial consortia.

Purification, and Biochemical and Biophysical Characterization of Cellobiohydrolase I from Trichoderma harzianum IOC 3844

  • Colussi, Francieli;Serpa, Viviane;Da Silva Delabona, Priscila;Manzine, Livia Regina;Voltatodio, Maria Luiza;Alves, Renata;Mello, Bruno Luan;Nei, Pereira Jr.;Farinas, Cristiane Sanches;Golubev, Alexander M.;Santos, Maria Auxiliadora Morim;Polikarpov, Igor
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.808-817
    • /
    • 2011
  • Because of its elevated cellulolytic activity, the filamentous fungus Trichoderma harzianum has a considerable potential in biomass hydrolysis applications. Trichoderma harzianum cellobiohydrolase I (ThCBHI), an exoglucanase, is an important enzyme in the process of cellulose degradation. Here, we report an easy single-step ion-exchange chromatographic method for purification of ThCBHI and its initial biophysical and biochemical characterization. The ThCBHI produced by induction with microcrystalline cellulose under submerged fermentation was purified on DEAE-Sephadex A-50 media and its identity was confirmed by mass spectrometry. The ThCBHI biochemical characterization showed that the protein has a molecular mass of 66 kDa and pI of 5.23. As confirmed by smallangle X-ray scattering (SAXS), both full-length ThCBHI and its catalytic core domain (CCD) obtained by digestion with papain are monomeric in solution. Secondary structure analysis of ThCBHI by circular dichroism revealed ${\alpha}$- helices and ${\beta}$-strands contents in the 28% and 38% range, respectively. The intrinsic fluorescence emission maximum of 337 nm was accounted for as different degrees of exposure of ThCBHI tryptophan residues to water. Moreover, ThCBHI displayed maximum activity at pH 5.0 and temperature of $50^{\circ}C$ with specific activities against Avicel and p-nitrophenyl-${\beta}$-D-cellobioside of 1.25 U/mg and 1.53 U/mg, respectively.

새로운 섬유소분해 균주 Trichoderma sp. C-4에서 분리한 Endoglucanase (F-I-III)에 대한 연구 (Characterization of Endoglucanase (F-I-III) Purified from Trichoderma sp. C-4)

  • 설옥주;정대균;한인섭;정춘수
    • 미생물학회지
    • /
    • 제41권1호
    • /
    • pp.81-86
    • /
    • 2005
  • 국내에서 분리된 우수섬유소분해 균주인 Trichodema sp. C-4가 생성하는 endoglucanase 중하나를 $(NH_4)_2SO_4$ 침전, Sephacryl S-200 gel filtration, DEAE-Sepharose A-50 ion exchange, Mono-P chromatofocusing (EPLC)의 단계로 정제하고 이를 F-I-III라 명명하였다. 분리된 효소 F-I-III는 분자량 56,000Da, 둥전점 4.9로 측정된 단일 단백질이었다. F-I-III는 $55^{\circ}C$에서 가장 높은 활성을 보였으며, pH 5.0이 반응 최적 조건이었다. $50^{\circ}C$에서 24시간 동안 안정하였으며, pH 4-7의 범위에서 안정하였다. CMC에 대한 비활성은 315.4U/mg 이었으며, PNPG2에 대한 Km 값은 2.69 mM이었다. 이 효소는 같은 균주에서 분리한 다른 endoglucanase와 exoglucanase를 섞었을 때 결정형 섬유소인 Avicel분해에 대한 상승효과를 보였다. $Mg^{2+},\;CO^{2+},\;Fe^{2+},\;Ca^{2+},\;CS^+,\;Li^+$ 등의 이온은 1 mM의 농도에서 효소의 활성에 큰 영향을 미치지 않았고, 1 mM의 환원제 (cystein, EDIA, \beta-mercaptoethanol, dithiothreitol(DTT), L-ascorbic acid)들은 효소의 활성을 증가시켰다. E-I-III의 N-말단 서열을 분석하여 QPGTSTPEVHPKKLTTYK의 서열을 얻었다. 이는 Trichodema reesei의 endoglucanase인 EGI과 $95\%$의 유사도를나타내었다. 분리된 효소 F-I-III는 높은 비활성을 가지고 있어서 활용가치가 높을 것으로 사료되었다.