• Title/Summary/Keyword: exoglucanase

Search Result 25, Processing Time 0.024 seconds

Effects of Endoglucanase and Exoglucanase from Trichoderma viride on Brightness and Physical Properties of Deinked Old Newsprint (Trichoderma viride로부터 분리한 Endoglucanase 및 Exoglucanase가 탈묵 펄프의 백색도 및 물리적 강도에 미치는 영향)

  • 김동원;정영규장영훈손기향
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.718-725
    • /
    • 1996
  • Old newsprint was deinked with endoglucanase, exoglucanase and their various compositions from Trichoderma viride. The yield decreased with an increase in enzyme concentration. Especially, it was the lowest in the treatment of endo-exo mixture(1:1). It may be regarded as a synergistic actions of the cellulase components. The brightness was the highest in pulp deinked with endo-exo mixture(1:1). Maximum brightness was observed when 0.5mg/mL of the endo-exo mixture was used. The physical strength increased with increasing concentration in exoglucanase. But, it decrease with increasing concentration in endoglucanse and endo-exo mixture(1:1). Also, we investigated the yield, brightness and physical strength of endoglucanase in combination with exoclucanase(12:1, 8:1, 4:l, 1:1, 1:4, 1:8, 1:12). Maximal deinking conditions, obtained at a specific optimal ratio of endoglucanase to exoglucanse are as follow ; 12:1 for yield, 12:1 for brightness, 4:1 for tensile strength, 12:1 for bursting strength, and 8:1 for tearing strength. These results indicated that the deinking depended largely upon the action of endoglucanase. Exoglucanase was occupying more than 60% of the total crude cellulase contents. Therefore, the most effective deinking must repress the action of exoglucanase.

  • PDF

Expression of Tkermomonoepora fusea Exoglucanase in Saccharomyces cerevisiae and Its Application to Cellulose Hydrolysis (Saccharomyces cerevisiae에서 Tkermomonospora fusca Exoglucanase의 발현 및 Cellulose분해에의 응용)

  • Park Hyun-Soon;Kim Hyun-Chul;Shin Dong-Ha;Kim Joong-Kyun;Nam Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.267-273
    • /
    • 2005
  • To develop effective and powerful probiotic, Saccharomyces cerevisiae strains producing cellulolytic enzymes were genetically brooded. For the production of exoglucanase, the plasmid pVT-TExo (8.8 kb) was constructed, in which Thermomonosporafusca exoglucanase gene (E3) was under the control of ADHl promoter, and introduced into S. cerevisiae SEY2102. When the transformant, S. cerevisiae SEY2102/pVT-TExo, was cultivated on YPD medium, the total expression level of avicelase reached about 190 unit/l. The secretion efficiency and plasmid stability were about $50\%\;and\;91\%$, respectively. Recombination exoglucanase enzyme bound to avicel better than Clostridium endoglucanase (CelA) and Trichoderma endoglucanase (C4) enzymes. The mixing ratio of E3 and CelA displaying the best synergistic hydrolysis for avicel was observed at 4:1. The mixture of endoglucanase (CelA) and exoglucanase (E3) resulted in 3.2-fold increase of avicelase activity and 2.5-fold enhanced production of sugar production from avicel, compared to the single enzyme treatment.

Purification of Cellulase from Trichoderma viride and properties of Its Component Enzymes

  • Dong Won Kim;Tae Seung Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.719-724
    • /
    • 1994
  • Major cellulase components, such as three endoglucanases (endoglucanases I, II, and III) and one exoglucanase (exoglucanase II), were isolated from a commercial cellulase (Meicelase TP 60) derived from the fungus Trichoderma viride by a series of chromatography procedures. These procedures were the gel filtration on Bio-Gel, the anion exchange on DEAE-Bio-Gel A, the cation exchange on SP-Sephadex C50, and the affinity chromatography on Avicel cellulose. The average molecular weights determined by SDS-polyacrylamide gel electrophoretic analysis were 51,000, 59,000, 41,000 and 62,000 Da for endoglucanases I, II and III and exoglucanase II, respectively. The extinction coefficients, ${\varepsilon}^{1%}$ 280 nm, of these enzymes were 11.7, 3.3, 7.2 and 11.3, respectively. Among them, the endoglucanase II showed the very low value of the coefficient compared with the others. On the other hand, it was found that endoglucanase II and III were of more random hydrolytic mode on carboxymethylcellulose as compared with those of endoglucanase I and exoglucanase II. Especially, endoglucanase I showed less random action than that of exoglucanase II. In the hydrolysis of insoluble cellulose by the enzyme components, cellobiose was the major product, but glucose was the major product by endoglucanase III.

Double Labeling of Binding Sites in Cellulosic Substrates Using Endo- and Exoglucanase-Gold Complexes

  • Bae Hyeun-Jong
    • Plant Resources
    • /
    • v.8 no.3
    • /
    • pp.175-180
    • /
    • 2005
  • Thin sections of cellulose fibers were incubated with an endo- and an exoglucanase labeled with gold particles of differing sizes. The hydrolytic sites were then visualized under transmission electron microscopy (TEM). The potential interaction between the ${\beta}$-1, 4-glucan substrates and the endo- and the exoglucanases was investigated using cellulosic and lignocellulosic substrates. The simultaneous visualization was very successful in distinguishing preferred substrates for each cellulase in lignocellulosic substrates. When plant lignocellulose was preincubated with endocellulase, density of the gold labeling greatly increased suggesting that preliminary exposure of lignocellulosic material to endocellulase may have enhanced the accessibility of the substrate to endocellulase and exocellulase. This result provided a plausible explanation for the observed endo/exo cellulase co-hydrolysis.

  • PDF

The Degradation of Paper Cultural Properties by Cellulase (셀룰라아제에 의한 지류 문화재의 분해)

  • 장영훈
    • KSBB Journal
    • /
    • v.17 no.6
    • /
    • pp.549-554
    • /
    • 2002
  • The hydrolysis of old book(Hanji) was performed using endoglucanase Ⅰ(endo Ⅰ), and exoglucanase II(exe II) and their mixtures purified from Trichoderma viride cellulase. The optimum degradation of old book(Hanji) with endo Ⅰ, exo II and endo-exo mixture(Ⅰ:Ⅰ) were exhibited at pH 4.5, 5.5, 5.0, respectively. Maximum degradations using endo Ⅰ, exo II and endo-exo mixture(Ⅰ:Ⅰ) occurred at 50$\^{C}$. The yield decreased an increasing the enzyme concentration. Especially, the yield was lowest for treatment with the endo Ⅰ-exo II mixture(Ⅰ:Ⅰ), which may be regarded as being due to a synergistic action of the cellulase components. Physical strength increased with increasing exo II concentration, and decreased with increasing concentration of endoglucanase Ⅰ. These results indicated that the degradation of old book(Hanji) depends largely upon the action of endoglucanase. Therefore, the most effective method of conserving paper cultural properties is to repress the action of endoglucanase.

Cellulolytic Enzymes from Acrophialophora nainiana

  • Punnapayak, Hunsa
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.245-247
    • /
    • 2005
  • A cellulolytic fungus isolated from Agave plantation in northeastern Thailand was identified as Acrophialophora nainiana. The fungus was capable of growing at pH between 3 - 7 and 25 - 45 $^{\circ}C$, with the optimum conditions at pH 5.0 and 40 $^{\circ}C$. The wild isolate produced cellulases, comprising of exoglucanase (0.019 U/mg protein), endoglucanase (0.366 U/mg protein), and ${\beta}$-glucosidase (0.001 U/mg protein). Mutations with UV and NTG produced the UV 10-2 mutant with cellulases activities including exoglucanase (0.093 U/mg protein), endoglucanase (0.585 U/mg protein), and ${\beta}$-glucosidase (0.013 U/mg protein). Purification of the enzymes with ultrafiltration, ammonium sulfate precipitation, and ion-exchange chromatography yielded the maximal cellulase specific activities of 2.736 U/mg protein (exoglucanase), 0.235 U/mg protein (endoglucanase), and 0.008 U/mg protein (${\beta}$-glucosidase). The mutant's cellulases were the most active at pH 5.0 and 60 $^{\circ}C$. Ion-exchange chromatography revealed that A. nainiana UV 10-2 cellulases were comprised of two peaks with one peak showing the single endoglucanase activity while the other peak showed a mixture of the three enzyme activities. Production of A. nainiana UV 10-2 cellulases using banana leaf stalk as the sole carbon source gave comparable yields to that of the pure ${\alpha}$-cellulose. The enzymes were used in the simultaneous saccharification and fermentation (SSF) of plant residue (Coix aquatica) along with Kluveromyces marxianus to produce ethanol. Moreover, when the enzymes were used in the bioscouring process of fabric, the desiravle traits of textile processing including immediate water absorbency, increased in whiteness and reduction of yellowness of the treated fabric were observed.

  • PDF

Evaluation of ${\beta}$-1,4-Endoglucanases Produced by Bacilli Isolated from Paper and Pulp Mill Effluents Irrigated Soil

  • Pandey, Sangeeta;Tiwari, Rameshwar;Singh, Surender;Nain, Lata;Saxena, Anil Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1073-1080
    • /
    • 2014
  • A total of 10 cellulase-producing bacteria were isolated from soil samples irrigated with paper and pulp mill effluents. The sequencing of 16S rRNA gene revealed that all isolates belonged to different species of genus Bacillus. Among the different isolates, B. subtilis IARI-SP-1 exhibited a high degree of ${\beta}$-1,4-endoglucanase (2.5 IU/ml), ${\beta}$-1,4-exoglucanase (0.8 IU/ml), and ${\beta}$-glucosidase (0.084 IU/ml) activity, followed by B. amyloliquefaciens IARI-SP-2. CMC was found to be the best carbon source for production of endo/exoglucanase and ${\beta}$-glucosidase. The ${\beta}$-1,4-endoglucanase gene was amplified from all isolates and their deduced amino acid sequences belonged to glycosyl hydrolase family 5. Among the domains of different isolates, the catalytic domains exhibited the highest homology of 93.7%, whereas the regions of signal, leader, linker, and carbohydrate-binding domain indicated low homology (73-74%). These variations in sequence homology are significant and could contribute to the structure and function of the enzyme.

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.

Enhancement of Excretory Production of an Exoglucanase from Escherichia coli with Phage Shock Protein A (PspA) Overexpression

  • Wang, Y.Y.;Fu, Z.B.;Ng, K.L.;Lam, C.C.;Chan, A.K.N.;Sze, K.F.;Wong, W.K.R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.637-645
    • /
    • 2011
  • Production of recombinant proteins by excretory expression has many advantages over intracellular expression in Escherichia coli. Hyperexpression of a secretory exoglucanase, Exg, of Cellulomonas fimi was previously shown to saturate the SecYEG pathway and result in dramatic cell death of E. coli. In this study, we demonstrated that overexpression of the PspA in the JM101(pM1VegGcexL-pspA) strain enhanced excretion of Exg to 1.65 U/ml using shake-flask cultivation, which was 80% higher than the highest yield previously obtained from the optimized JM101(pM1VegGcexL) strain. A much higher excreted Exg activity of 4.5 U/ml was further achieved with high cell density cultivation using rich media. Furthermore, we showed that the PspA overexpression strain enjoyed an elevated critical value (CV), which was defined as the largest quotient between the intracellular unprocessed precursor and its secreted mature counterpart that was still tolerable by the host cells prior to the onset of cell death, improving from the previously determined CV of 20/80 to the currently achieved CV of 45/55 for Exg. The results suggested that the PspA overexpression strain might tolerate a higher level of precursor Exg making use of the SecYEG pathway for secretion. The reduced lethal effect might be attributable to the overexpressed PspA, which was postulated to be able to reduce membrane depolarization and damage. Our findings introduce a novel strategy of the combined application of metabolic engineering and construct optimization to the attainment of the best possible E. coli producers for secretory/excretory production of recombinant proteins, using Exg as the model protein.