• Title/Summary/Keyword: exit angle

Search Result 294, Processing Time 0.022 seconds

Numerical Simulation of Duct Flow about Shape and Arrangement of Inlet Guide Vane to Increase the Temperature Uniformity (전치 가이드 베인 배치 및 형상에 따른 보일러 입구 온도분포의 수치해석 연구)

  • Lee, Su-Yun;Shin, Seung-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1172-1177
    • /
    • 2008
  • Diverging channel from gas burner exit to the inlet section of Heat Recovery Steam Generator (HRSG) has been re-designed for 1 MW steam supply and power generation system. Three different test geometries have been chosen for the numerical simulation. The existing design for 300 kW HRSG system (CASE B) has been improved by geometry and position changes of inlet guide vanes along with gas velocity entrance angle at the diverging channel inlet (CASE C). Both cases has been compared with the case where hot combustion gas is directly injected without any guide vanes (CASE A). Improved design shows overall uniform velocity and temperature distribution compared to existing design.

  • PDF

An Experimental Study of Flow Behaviour in Underground Stairway Fire (지하계단 화재에서 유동에 대한 실험연구)

  • 정진용;홍기배;이재하;유홍선
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.821-827
    • /
    • 2003
  • Reduced-scale experimental study was carried out on the heat flow behavior which flows under the sloped ceiling in underground fire. Temperature and flow velocity were measured to characterize the ceiling jet along the sloped stairway ceiling. The methanol fuel was used as a model fire source giving 2.2 and 3.4 kW, with changing the slope angle of stairway adopting of 15, 25, 35, and 45 deg. Based on the experimental data, excess temperature and velocity along the sloped stairway ceiling were examined which are usefully applicable to estimate the activating conditions of heat detector and sprinkler head mounted on the sloped ceiling. Excess temperature in upper exit of the sloped stairway was also examined to analyze the soffit which delays the smoke diffusion. The result shows that the activating conditions of heat detector and sprinkler in the sloped stairway ceiling have to be considered differently in a point of about 30 deg.

Investigation on the Performance Characteristics of the 75ton Class Turbopump Turbine (75톤급 액체로켓 엔진 터보펌프 터빈의 성능특성연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gee;Park, Pyun-Goo;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.38-44
    • /
    • 2010
  • Performance test of the 75ton class turbopump turbine was performed. Through the turbine power measurement in the wide-range operational conditions, velocity ratio, total pressure loss, and relative flow angle characteristics was quantified. Efficiency and nozzle exit pressure behavior was also investigated and compared with 30ton turbopump turbine data. A rotor blade was redesigned based on the test results and CFD analysis.

  • PDF

Performance Improvement of High Speed Jet Fan

  • Choi, Young-Seok;Kim, Joon-Hyung;Lee, Kyoung-Yong;Yang, Sang-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of jet fan design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the DOE method have been applied. Several geometric variables, i.e., hub-tip ratio, meridional shape, rotor stagger angle, number of rotor-stator blades and stator geometry, were employed to improve the performance of the jet fan. The objective functions are defined as the exit velocity and total efficiency at the operating condition. Based on the results of computational analyses, the performance of the jet fan was significantly improved. The performance degradations when the jet fan is operated in the reverse direction are also discussed.

Design Optimization of Centrifugal Pump Impeller Using DOE (실험계획법을 사용한 원심펌프 임펠러 최적설계)

  • Kim, Sung;Choi, Young-Seok;Yoon, Joon-Yong;Kim, Deok-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.36-42
    • /
    • 2008
  • In this paper, the performance characteristics of the impeller in a centrifugal pump were investigated using DOE(Design of Experiment) with commercial CFD software. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The incidence angles and the exit blade angle were selected as main parameters using 2k factorial and the influences of selected design parameters were examined through the optimization process using RSM.

Representation of cutting forces and tool deflection in end milling using Fourier series (엔드밀 가공에서 푸리에 급수를 이용한 절삭력 및 공구변형 표현)

  • Ryu S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.781-785
    • /
    • 2005
  • Cutting forces and tool deflection in end milling are represented as the closed form of tool rotational angle and cutting conditions. The discrete cutting forces caused by tool entry and exit are continued using the Fourier series expansion. Tool deflection is predicted by direct integration of the distributed loads on cutting edges. Cutting conditions, tool geometry, run-outs and the stiffness of tool clamping pan are considered for cutting forces and tool deflection estimation. Compared to numerical methods, the presented method has advantages in short prediction time and the effects of feeding and run-outs on cutting forces and tool deflection can be analyzed quantitatively. This research can be effectively used in real time machining error estimation and cutting condition selection for error minimization since the ferm accuracy is easily predicted by tool deflect ion curve.

  • PDF

Optimization of Cutting Parameters for Burr Minimization (버의 최소화를 위한 밀링 가공 파라미터의 최적화)

  • Lee, Sang-Heon;Lee, Seong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.130-136
    • /
    • 2001
  • Burrs formed during face milling operations are very hard to characterize because there are many parameters that affect the cutting process. Many researchers have tried to predict burr characteristics including burr size and shapes with various experimental conditions such as cutting speed, feed rate, in-plane exit angle, number of inserts, etc., but it still remains as a challenging problem for the complex combined effects between the parameters. In this paper, the Taguchi method, which is a systematic optimization application in design and analysis of experiments, is introduced to acquire optimum cutting parameters for burr minimization in face milling. Also, analysis of variance (AVOVA) is employed to study the performance characteristics in more detail. Experimental verifications are provided to show the effectiveness of this approach.

  • PDF

A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills (다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구)

  • Kim, Hyeong-Chul;Kim, Ki-Soo;Hahm, Seung-Duck;Kim, Hong-Bea;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF

Flow Characteristics and Optimal Design for RDT Sparger (원자로배수탱크내 Sparger에 대한 유동특성 및 최적설계)

  • Kim, Kwang-Chu;Park, Man-Heung;Park, Kyoung-Suk;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1390-1398
    • /
    • 1999
  • A numerical analysis for ROT sparger of PWR(Pressurized Water Reactor) is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K=3.53 at the present design condition if engineering mar&in is considered with 20%, and flow ratio into branch pipe is $Q_s/Q_i=0.41$. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and section area ratio of branch pipe for main pipe, flow resistance coefficient is increased as $Q_s/Q_i$ decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as $Q_s/Q_i$ decreasing. As the change rate of $Q_s/Q_i$ is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is $D_s/D_i=0.333$, the section area ratio is $A_s/A_i=0.2$ and the branch angle is ${\alpha}=55^{\circ}$.

A Numerical Study on Flow and Heat Transfer Characteristics for an Oblique Impingement Jet Using $k-{\varepsilon}-\bar{\upsilon{'}^2}$ Model ($k-{\varepsilon}-\bar{\upsilon{'}^2}$모델을 이용한 경사진 충돌제트의 유동 및 열전달 특성에 대한 수치해석적 연구)

  • Choe, Yeong-Gi;Choe, Bong-Jun;Lee, Jeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.9
    • /
    • pp.1183-1192
    • /
    • 2001
  • The numerical simulation has been conducted for the investigation of flow and heat transfer characteristics of an oblique impingement jet injected to a flat plate. The finite volume method was used to discretize the governing equations based on the non-orthogonal coordinate with non-staggered variable arrangement. The $textsc{k}$-$\varepsilon$-ν(sup)'2 turbulence model was employed to consider the consider the anisotropic flow characteristics generated by the impingement jet flow. The predicted results were compared with the experimental data and those of the standard $textsc{k}$-$\varepsilon$ turbulence model. The results of the $textsc{k}$-$\varepsilon$-ν(sup)'2 model showed better agreement with the experimental data than those of the standard $textsc{k}$-$\varepsilon$ model. In order to get the optimum condition, the flow and temperature fields were calculated with a variation of inclined angle($\alpha$=30$^{\circ}$~90$^{\circ}$) and the distance between the jet exit and impingement plate-to-diameter (L/D=4~10) at a fixed Reynolds number(Re=20,000). For a small L/D, the near-peak Nusselt numbers were not significantly effected by the inclined angle. The near-peak Nusselt numbers were not significantly affected by the L/D in the case of a large $\alpha$. The overall shape of the local Nusselt numbers was influenced by both the jet orifice-to-plate spacing and the jet angle.