• Title/Summary/Keyword: existing freeway

Search Result 50, Processing Time 0.026 seconds

Suggestion of Design Criteria in Merge Areas of Climbing Lanes (오르막차로 종점부 설계기준에 관한 연구)

  • 권오철;원제무;김상구
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.19-28
    • /
    • 1999
  • This study deals with developing Critical GaP Model and Merge Probability Model which describe traffic patterns in the microscopic view, for the Purpose of suggesting a proper design criteria within the climbing lane section. Minimum tolerance speeds at the end of the climbing lane are calculated 60km/hr for 2-lane freeway, and 75km/hr for 4-lane freeway. In case of 2-lane freeway, the result is same as existing design criteria. and a new value is 15km/hr higher than existing design criteria for 4-lane freeway. In addition, auxiliary length at the end of the climbing lane is needed about 200m for 4-lane freeway to adjust high minimum tolerance speed. Therefore we propose to increase minimum tolerance speed for 4-lane freeway.

  • PDF

A Study on Freeway Weaving Section Analysis (고속도로의 엇갈림 구간 분석에 관한 연구)

  • 최병국;정준화
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.1
    • /
    • pp.21-40
    • /
    • 1992
  • We examine primarily the existing study procedures for freeway weaving section by comparing speed estimates. Most methods have poor predictions because of neglecting the weaving vehicle influ-ence. In this study we develop the speed prediction equation considering the weaving influence area i.e, weaving box. Assuming that speeds outside weaving box are similar to speeds in freeway basic sec-tions we develop speed equation in box based on the field data. Moreover level of service criteria and weaving analysis precedure are proposed under the new speed prediction equation.

  • PDF

Evaluation of Analysis Methodologies for Freeway Ramp Areas (고속도로 연결로 분석기법에 대한 평가)

  • 이정수;윤치환;김은연
    • Journal of Korean Society of Transportation
    • /
    • v.10 no.1
    • /
    • pp.5-20
    • /
    • 1992
  • Even though the types of ramp facilities in Korea are not various like other countries operations in these sections are very important because ramp merging and /or diverging flow affects freeway overall sections. In this study existing methodologies especially the gap acceptance model and the regression model in USHCM are evaluated with our field data. By gap acceptance model the merging capacity is founded 2.360 pcph which is increased by 7% than the capacity of freeway basic section. And in comparison of actual lane 1 volume to the estimation volume by HCM model the model slightly overestimates the actual volue.

  • PDF

Performance Test of APIS, DELOS Algorithm using Paramics (Paramics를 이용한 APID, DELOS평가)

  • Nam, Doohee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.61-66
    • /
    • 2013
  • The central core of the Traffic Management System is an Incident Management System. Whole approach has been component-orientated, with a secondary emphasis being placed on the traffic characteristics at the sites. The first action taken during the development process was the selection of the required data for each components within the existing infrastructure of Algeria freeway system. After review and analysis of existing incident detection methodologies, Paramics was utilized to test the performance of APID, DELOS algorithms. The existing system of Algeria freeway was tested in a different configuration at different sections of freeway, thereby increasing the validity and scope of the overall findings. The incident detection module has been performed according to predefined system validation specifications. The Paramics simulation was done with the use of synchronous analysis, thereby providing a means for testing the incident detection module.

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어)

  • Cho, Ki-Yong;Bae, Chul-Ho;Lee, Jung-Hwan;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.84-92
    • /
    • 2006
  • Freeway Corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. Optimization results are verified by comparison with the results from MATDYMO.

The Integrated Control Model for the Freeway Corridors based on Multi-Agent Approach I : Simulation System & Modeling for Optimization (멀티 에이전트를 이용한 도로정체에 따른 교통흐름 예측 및 통합제어 I : 시뮬레이션 시스템 개발 및 최적화를 위한 모델링)

  • Cho, Ki-Yong;Bae, Chul-Ho;Kim, Hyun-Jun;Chu, Yul;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Freeway corridors consist of urban freeways and parallel arterials that drivers can use alternatively. Ramp metering in freeways and signal control in arterials are contemporary traffic control methods that have been developed and applied in order to improve traffic conditions of freeway corridors. However, most of the existing studies have focused on either optimal ramp metering in freeways, or progression signal strategies between arterial intersections. There have been no traffic control systems in Korea that integrates the freeway ramp metering and arterial signal control. The effective control strategies for freeway operations may cause negative effects on arterial traffic. On the other hand, traffic congestion and bottleneck phenomenon of arterials due to the increasing peak-hour travel demand and ineffective signal operation may generate an accessibility problem to freeway ramps. Thus, the main function of the freeway which is the through-traffic process has not been successful. The purpose of this study is to develop an integrated control model that connects freeway ramp metering systems and signal control systems in arterial intersections. And Optimization of integrated control model which consists of ramp metering and signal control is another purpose. The design of experiment, neural network, and simulated annealing are used for optimization.

Developement of an Optimization Model for Freeway Entrance-Ramp Metering (고속도로시스템의 정주기식 램프미터링을 위한 최적화모형의 개발)

  • 김영찬;빈미영
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.4
    • /
    • pp.117-132
    • /
    • 1995
  • Peak-period congestion is a frequent occurrence on many freeways. Entrance-metering is an effective strategey in improving urban freeway traffic condition. This paper describes the prodecure to develop a computer program for proparing optimum ramp-metering stategies. Four existing ramp-metering optimaization models wer reviewed and evaluated in regared to their theories and actural performances. A optimization model was proposed in this paper. Final model takes aform of quadratic programming. The performance of the propeosed model wastest using FREFLO.

  • PDF

The Development of Estimation Technique of Freeway Origin-Destination Demand Using a Real Traffic Data of FTMS (교통관리시스템의 실시간 교통자료를 이용한 고속도로 동적OD 추정기법의 개발)

  • Kim, Ju-Young;Lee, Seung-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.4 s.82
    • /
    • pp.57-69
    • /
    • 2005
  • The goal of this paper is to develop freeway Origin-Destination (OD) demand estimation model using real-time traffic data collected from Freeway Traffic Management System (FTMS). In existing research, the micro-simulation models had been used to get a link distribution proportion by time process. Because of hi-level problem between the traffic flow model and the optimal OD solution algorithm, it is difficult for the existing models to be loaded at FTMS. The formulation of methodology proposed in this paper includes traffic flow technique to be able to remove the bi-level problem and optimal solution algorithm using a genetic algorithm. The proposed methodology is evaluated by using the real-time data of SOHAEAN freeway, South Korea.

Development of Lane-changing Model for Two-Lane Freeway Traffic Based on CA (Cellular Automata 기반 2차로 고속도로 차로변경모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.329-334
    • /
    • 2009
  • The various behaviors of vehicular traffic flow are generated through both car-following and lane-changing behaviors of vehicles. Especially lane-usage varies by lane-changing behaviors. In the area of microscopic vehicle simulation, a lane-changing model connected to a car-following model parallel is essential to generate both various traffic flows relationships and laneusages. In Korea, some studies on car-following models have been reported, but few studies for lane-changing models stay in the beginning stage. In this paper, a two-lane changing model for the simulation modeling of large freeway network is introduced. The lane-changing model is developed based on CA (Cellular Automata) model. The developed model is parallel combined with an existing CA car-following model and tested on a closed link system. The results of simulation show that the developed model generates the various behaviors of lane usage, which existing CA lane-changing models could not generate. The presented model is expected to be used for the simulation of more various freeway traffic flows.

Density-Based Ramp Metering Method Considering Traffic of Freeway and Ramp on ITS (지능형 교통시스템에서 도시 고속도로와 램프의 교통량을 고려한 밀도 기반 램프 미터링 방법)

  • Jeon, Soobin;Jung, Inbum
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.223-238
    • /
    • 2015
  • Ramp metering is the most effective and direct method to control a vehicle entering the freeway. This paper proposed the new density-based ramp metering method. Existing methods that use the flow data had low reliability data and can have various problems. Also, when the ramp metering was operated by freeway congestion, the additional congestion and over-capacity can occur in the ramp. To solve this problem with the existing method, the proposed method used the density and acceleration data of the freeway and considered the ramp status. The developed strategy was tested on Trunk Highway 62 west bound (TH-62 WB) in Minnesota Twin-City and compared with Stratified Zone Metering(SZM), which had been operating in the Twin-City freeway. To constitute the experiment environment, the VISSIM simulator was used. The Traffic Information and Condition Analysis System (TICAS) was developed to control the PTV VISSIM simulator. The experiment condition was set between 2:00 PM and 7:00 PM, Oct 5th, 2014 during severe traffic congestion. The simulation results showed that total travel time was reduced by 20% for SZM. Thus, we solved the problem of ramp congestion and over-capacity.