• Title/Summary/Keyword: existing controller

Search Result 730, Processing Time 0.024 seconds

Implementation of a Sightseeing Multi-function Controller Using Neural Networks

  • Jae-Kyung, Lee;Jae-Hong, Yim
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2023
  • This study constructs various scenarios required for landscape lighting; furthermore, a large-capacity general-purpose multifunctional controller is designed and implemented to validate the operation of the various scenarios. The multi-functional controller is a large-capacity general-purpose controller composed of a drive and control unit that controls the scenarios and colors of LED modules and an LED display unit. In addition, we conduct a computer simulation by designing a control system to represent the most appropriate color according to the input values of the temperature, illuminance, and humidity, using the neuro-control system. Consequently, when examining the result and output color according to neuro-control, unlike existing crisp logic, neuro-control does not require the storage of many data inputs because of the characteristics of artificial intelligence; the desired value can be controlled by learning with learning data.

Dual Controller Structure for Single Plant Control Using the Distributed Control System (분산 제어 시스템을 이용한 단일 플랜트 제어용 이중 제어기 구조)

  • Goon-Ho Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.148-153
    • /
    • 2023
  • A digital controller uses a microprocessor and is a controller implemented as a program. This method has the advantage of being more maintenance-friendly than existing analog controllers. However, it inevitably requires computation time to execute the internal program. Therefore, the digital controller uses a method of controlling the system at a certain cycle by considering this time, and this cycle is very closely related to the performance of the microprocessor used. In other words, in the case of very high performance, this control cycle can be shortened to near real time, but this may result in a disadvantage in terms of cost. In this paper, we propose a method to solve this problem by implementing two processors with slightly lower performance in a control system in a series-parallel structure. For this purpose, we will use a digital distributed control system and implement an experimental system to examine its effectiveness.

  • PDF

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

The On-Line Voltage Management and Control Solution of Distribution Systems Based on the Pattern Recognition Method

  • Ko, Yun-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.330-336
    • /
    • 2009
  • This paper proposes an on-line voltage management and control solution for a distribution system which can improve the efficiency and accuracy of existing off-line work by collecting customer voltage on-line as well as the voltage compensation capability of the existing ULTC (Under Load Tap Changer) operation and control strategy by controlling the ULTC tap based on pattern clustering and recognition. The proposed solution consists of an ADVMD (Advanced Digital Voltage Management Device), a VMS (Voltage Management Solution) and an OLDUC (On-Line Digital ULTC Controller). An on-line voltage management emulator based on multi-thread programming and the shared memory method is developed to emulate on-line voltage management and digital ULTC control methodology based on the on-line collection of the customer's voltage. In addition, using this emulator, the effectiveness of the proposed pattern clustering and recognition based ULTC control strategy is proven for the worst voltage environments for three days.

Filter-press Control and Management system (필터프레스 제어 및 관리 시스템)

  • Jung, Yong-Kuk;Choi, Young-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.96-100
    • /
    • 2012
  • Existing, widely used industrial controller programmable logic controller (PLC) using the high cost and maintenance was a difficult problem. In addition, the network configuration was not easy. Thus, the filter press by remote control and management to improve productivity and shorten maintenance time. Variety of smart devices (smart phones, iPad, tablet PC, etc.) Remote control is possible by utilizing the existing controlled by the PLC addresses maintenance and improved performance compared to that of possible filter press control and management system was developed.

Artificial neural network controller for automatic ship berthing using head-up coordinate system

  • Im, Nam-Kyun;Nguyen, Van-Suong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.235-249
    • /
    • 2018
  • The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports.

Development of Integrated Mixer Controller for Digital Public Address (디지털전관방송을 위한 통합믹서컨트롤러 개발)

  • Cho, Juphil;Kim, Kwan-Woong;Kim, Daeik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • Nowadays, based on the advancement of IT techniques, innovative products combining IT techniques to PA system are developing. In this paper, we presented the hybrid mixer controller for digital PA system. We develop the integrated mixer controller which includes the digital mixer composing an existing digital PA system and function of digital integrated controller. Developed integrated mixer controller consists of multichannel mixer function with 16 audio input channels, 8 output channels. And, it has an equalizer for processing digital audio signal, matrix and limiter. Also, the developed controller has some features such as internet connection for controlling of overall PA system and remote monitoring of mixer process condition.

Development of Peripheral Units of the 16 bit Micro-Controller for Mobile Telecommunication Terminal (이동통신 단말기용 16 비트 마이크로콘트롤러의 주변장치 개발)

  • 박성모;이남길;김형길;김세균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.142-151
    • /
    • 1995
  • The trend of compact size, light weight, low power consumption in the portable telecommunication equipments demands large scale integration and low voltage operation of chips and the minimization of the number of the components in the telecommunication terminal. According to the trend, existing chip components are modulized and are integrated as a part into a bigger chip. This paper is about the development of the peripheral units of micro-controller for mobile telecommunication terminal. Peripherals consist of DMA controller, Interrupt controller, timer, watchdog timer, clock generator, and power management unit. They are designed to be integrated with EU(Execution Unit) and BIU(Bus Interface Unit) into a 16 bit micro-controller which will be used as a core of an ASIC for next generation digital mobile telecommunication terminal. At first, whole block of the micro-controller was described by VHDL behavioral model and simulated to verify its overall operation. Then, watchdog timer, clock generator and power management unit were directly synthesized by using VHDL synthesis tool. Rest of the pheriperal units were designed and simulated by using Compass Design Tool.

  • PDF

Design of fuzzy logic Run-by-Run controller for rapid thermal precessing system (고속 열처리공정 시스템의 퍼지 Run-by-Run 제어기 설계)

  • Lee, Seok-Joo;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • A fuzzy logic Run-by-Run(RbR) controller and an in -line wafer characteristics prediction scheme for the rapid thermal processing system have been developed for the study of process repeatability. The fuzzy logic RbR controller provides a framework for controlling a process which is subject to disturbances such as shifts and drifts as a normal part of its operation. The fuzzy logic RbR controller combines the advantages of both fuzzy logic and feedback control. It has two components : fuzzy logic diagnostic system and model modification system. At first, a neural network model is constructed with the I/O data collected during the designed experiments. The wafer state after each run is assessed by the fuzzy logic diagnostic system with featuring step. The model modification system updates the existing neural network process model in case of process shift or drift, and then select a new recipe based on the updated model using genetic algorithm. After this procedure, wafer characteristics are predicted from the in-line wafer characteristics prediction model with principal component analysis. The fuzzy logic RbR controller has been applied to the control of Titanium SALICIDE process. After completing all of the above, it follows that: 1) the fuzzy logic RbR controller can compensate the process draft, and 2) the in-line wafer characteristics prediction scheme can reduce the measurement cost and time.

  • PDF

Development of the Small Gas Boiler Controller Using Web Browser (Web browser를 이용한 가정용 가스보일러 제어기술 개발)

  • Shon, Su-Goog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.213-219
    • /
    • 2004
  • This paper describes the developmnet of a web-based boiler controller which can be in parallel operated with an existing boiler controller. The web-based boiler controller mainly consists of RTL8019AS NIC and TS80C32 microcontroller. In order to communicate over the Internet, we need to develop network driver, IP, TCP, UDP, ICMP, and HTTP. For a specific application like web-boiler controller, we have proposed a common global data buffer algorithm to minimize the RAM memory usage. Finally, the correctness and performance of the protocols are tested and verified using CommView and Dummynet. The development is satisfactorily operated only for few hundreds of bytes of RAM usage without sacrificing interoperability between hosts.