• Title/Summary/Keyword: exhaust pollution

Search Result 365, Processing Time 0.027 seconds

A study on the characteristics of fuel performance according to the oxygenated additive type for gasoline fuel Part 2. Exhaust and Non-regulated, PM emission characteristics (휘발유 연료용 함산소 첨가제 종류에 따른 성능 특성 연구 Part 2. 배출가스 및 미규제 물질, 입자상 물질 특성)

  • Lee, Min-Ho;Kim, Ki-Ho;Ha, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.374-384
    • /
    • 2016
  • Concern about air pollution is gradually rising up in domestic and foreign, automotive and fuel researchers are trying to reduce vehicle exhaust emissions, through a lot of approaches, which consist of new engine design and innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research is proceeding by two main issues : exhaust emissions and PM particle emissions of gasoline vehicle. Exhaust emissions, non-regulated emissions and PM (particulate matter) particles of automotive are causing many problems which ambient pollution and harmful effects on the human body. The main particulate fraction of automotive exhaust emissions consists of small particles. Because of their small size, inhaled particles can easily penetrate deep into the lungs. The rough surfaces of these particles make it easier for them to combine with other toxins in the environment. Thus, the hazards of particle inhalation are increased. Based on the oxygenated fuel additive types (MTBE, Bio-ETBE, Bio-ethanol, Bio-butanol), this paper discussed the influence of oxygen contents on gasoline vehicle exhaust emissions, non-regulated emissions and nano-particle emissions. Also, this paper assessed exhaust emission characteristics at 2 type test modes. The test modes were FTP-75 and HWFET. All measurement items be verified less than the value of regulated emissions. It could be known difference increase and decrease by each measurement item depending on increase the oxygen contents.

Effect of nozzle diameter on the reduction of smoke emission from naval ship diesel engines (함정용 디젤엔진의 노즐 직경 변화가 매연 발생에 미치는 영향)

  • Son, Min-Soo;Choi, Jae-Sung;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.180-184
    • /
    • 2016
  • Legislative and regulatory actions regarding the exhaust gas from ships are being strengthened by both international organizations and national governments, to protect human health and the environment. Exhaust gas traps are excluded from exhaust gas regulation applications, but, recently, the United States, Britain, and other developed countries have examined a variety of ways to improve the system, including the introduction of electric propulsion systems to prevent air pollution generated by naval ships. This study investigates a large number of smoke problems of naval diesel engines to verify the effect of improving the nozzle characteristics. An exhaust gas emission measurement method to determine the quality of pollutant exhaust gas generated during low-load operation is proposed through the research methodology of the smoke problem. It was confirmed that the emissions value is improved by decreasing the nozzle hole diameter and increasing the injection pressure. At the same time, the flow rate decrease equation and setting up a test memo based on the nozzle diameter confirmed that the fuel consumption, to which the nozzle diameter in the flow path is related, is reduced.

A Study on the Characteristics for Durability with Biodiesel Fuel(BDF 5%) in a Commercial Common Rail Diesel Engine (커먼레일 디젤기관에서 바이오디젤유(BDF 5%) 적용시의 내구특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engines are recognized as main causes of the air pollution. CRDI(common rail direct injection) diesel engine is widely used for the sake of minimization on exhaust emission. Because biodiesel fuel is a renewable and alternative fuel for diesel engine, its usability is expanded. In this study, a common rail diesel engine was run with 5% of biodiesel fuel(BDF 5%) more than 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the engine performance and exhaust emissions. The data of engine performance and exhaust emissions was sampled at 1 hour intervals for analysis. When a common rail diesel engine runs on BDF 5% for long time, power and energy consumption of the engine are similar to the case using diesel fuel. The smoke emission of BDF 5% was reduced in comparison with diesel fuel, that is, it was reduced approximately 15% at 4000rpm, and load of 90%. And, CO and $CO_2$ were reduced, too. On the other hand, NOx emission of biodiesel fuel was slightly increased about 2%, but it was almost same as a commercial diesel fuel.

Trend of exhaust emission control of diesel engine vehicles in Korea (국내 경유자동차 배출물 규제동향)

  • 정인석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-12
    • /
    • 1989
  • This short report describes the trend of exhaust emission control of the diesel engine vehicles in Korea, which originally was motivated from the newly proposed Emission Control Regulation of Diesel Engine Vehicles possible to be activated in 1991 by Korean Environmental Protection Agency. This short survey report has been prepared by the special working group of The Korea Society of Automotive Engineers (KSAE) on this particular subject. This report includes (1) estimation of portions of contribution of diesel engine vehicle emission to total air pollution, (2) comparison of proposals of new articles/regulations/laws in Korea with those of other selected countries such as USA, European countries, and Japan, (3) comparison of vehical emission control regulations in Korea with those in other selected countries, (4) technical aspects of possibilities of reduction of diesel engine vehicle emissions, (5) additional administrational aspects of technology development program, (6) social impact resulted from the severe emission control regulation on diesel engine vehicles, and (7) proposals, prepared by the special working group of the KSAE, on the emission control regulation of diesel engine vehicles, which can possibly bring better cleaner air released from the air pollution resulted from diesel engine exhaust emissions in real sense with minimal financial contribution, with optimal technological efforts, with less social impacts, within five to ten year period.

  • PDF

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Research Method and Prediction Model of PM2.5 in Cities

  • Yang, ZhenYu;Xia, Sai;Jin, Jie
    • Journal of Urban Science
    • /
    • v.8 no.2
    • /
    • pp.25-28
    • /
    • 2019
  • Hefei has suffered from heavy air pollution, especially car exhaust and industry emissions. The smoke contains PM2.5 and PM10. These smoke will enter people's bodies and have a bad impact on the human body. This review is about PM2.5. This review covers the sources and hazards of PM2.5. It introduces the use of modelling methods to analyze PM2.5 pollution in various places and proposes treatment measures. These cities were heavily polluted by PM2.5, and after the local government's management and renovation, there has been a significant improvement. However, there are still many shortcomings in the process of pollution improvement. This review combines the means used in the process of pollution prevention and control in Handan City, Beijing. Hefei now suffers from some of the same pollution as these cities did in the past.

An Experimental Study on Exhaust Gas Reduction of Diesel Oxidation Catalyst by CVS-75 Mode in Light Duty Diesel Engine (小型디젤機關에서 CVS-75 모드에 따른 디젤 酸化觸媒裝置의 排出가스 低減에 關한 實驗的 硏究)

  • 한영출;김종춘;오용석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.457-461
    • /
    • 1999
  • Recently, increasing usage of diesel vehicle, many countries try to reduce the pollutant materials by emission regulation standard. Particularly, in our country, the supplement ratio of diesel vehicle is high, and air pollution by particulate matter(PM) is very serious. So, in theoretical study wer analyzed the formation principle of gaseous emission and PM, the characteristics of CVS-75 mode. In experimental study, we tested exhaust gas reduction of emission and PM, the characteristics of CVS-75 mode. In experimental study, we tested exhaust gas reduction of disel oxidation catalyst(DOC) by CVS-75 mode in light duty diesel vehicle. In case of an automobiletest with the 2,956cc diesel engine which DOC was equipped, CVS-75 mode which is similar to driving conditions on the road was chosen as the restrictive mode of light duty diesel automobile in our country. According to the Pt, the reduction rate of exhaust emission was estimated with using 0.1% high sulfur fuel and 0.05% low sulfur fuel.

  • PDF

A Study on NOx and Smoke by Exhaust Gas Measuring Method of Light-Duty Engine (소형엔진의 배출가스측정방법에 따른 질소산화물 및 매연에 관한 연구)

  • 한영출;나완용;오용석;문병철;박봉규;박귀열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.7-11
    • /
    • 2001
  • Recently, increasing usage of diesel vehicle, many countries try to reduce the pollutant materials by emission regulation standard. Particularly in our country, the supplement ration of diesel vehicle is high, and air pollution by vehicle exhaust gas is very serious. So, in study, we tested exhaust gas by various mode in-light duty diesel engine. Therefore, we can know about NOx and smoke seriousness.

  • PDF

The Experimental Study on Emission Reduction by Oxygenate Additive in D.I. Diesel Engine (직접분사식 디젤기관에서 함산소계 첨가에 의한 배출가스 저감에 관한 실험적 연구)

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.33-42
    • /
    • 2002
  • Recently, our world is faced with very serious and hard problems related to the air pollution due to the exhaust emissions of the diesel engine. In this paper, the effect of oxygen component in fuel on the exhaust emissions has been investigated fur direct injection diesel engine. It was tested to estimate change of engine performance and exhaust emission characteristics for the commercial diesel fuel and oxygenate blended fuel which has three kinds of mixed ratio. And, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from Cl to C6 in exhaust gas using gas chromatography to seek the reason far remarkable reduction of smoke emission. This study was carried out by comparing the chromatogram with diesel fuel and diesel feel blended DGM(diethylene glycol dimethyl ether) 5%. The results of this study show that individual hydrocarbon(C1∼C6) as well as total hydrocarbon of oxygenated fuel is reduced remarkably than that of diesel fuel.