• Title/Summary/Keyword: excretion and reabsorption rates of Na and K

Search Result 7, Processing Time 0.023 seconds

Effect of Diltiazem on Renal Function in the Dog (딜티아젬의 개 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Lim, Kwang-Nam
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.568-578
    • /
    • 1994
  • This study was performed in order to investigate the effect of diltiazem, which is a $Ca^{2+}$ channel blocker of benzothiazepine derivatives, on renal function in the dog. Diltiazem, when infused into the vein or carotid artery, produced the antidiuresis accompanied with the decreased excretion rates of sodium and potassium in urine$(E_{Na},\;E_K)$ and the increased reabsorption rates of sodium and potassium in renal tubules$(R_{Na},\;R_K)$. Diltiazem, when infused into a renal artery, exhibited the diuresis along with the increased renal plasma flow(RPF), osmolar clearance$(C_{osm})$, $E_{Na}$ and $E_K$, and decreased $R_{Na}$ and $R_K$ in only infused kidney. Above results suggest that diltiazem possess both antidiuretic action through central action and diuretic action by direct inhibition of electrolytes reabsorption rates in renal tubules, mainly distal tubule.

  • PDF

Effect of Captopril on Renal Function in Dog (개의 신장기능에 미치는 Captopril의 영향)

  • Ko, Suk-Tai;Lee, Min-Jae
    • YAKHAK HOEJI
    • /
    • v.34 no.2
    • /
    • pp.88-101
    • /
    • 1990
  • Captopril, angiotensin converting enzyme (ACE) inhibitor, when given intravenously in dog, elicited the diuretic action along with the increases of glomerular filtration rates (GFR), renal plasma flow (RPF) and osmolar clearances (Cosm) with no changes of free water clearnces ($C_{H_2O}$), and then captopril produced the enlargement of excretion rates of electrolytes in urine and the reduction of reabsorption rates of electrolytes in renal tubles. Captopril, when given into a renal artery, exhibited no changes of renal function in the experinental kidney, whereas diuretic action with the same mechanism as shown in intravenous captopril in control kidney. Captopril, when injected into a carotid artery, showed increases in rates of urine flow in a small does which did not affect on renal action when it was administered intravenusly. Diuretic action induced by captopril was not influenced by renal artery denervation, propranolol and angiotensin II inhibiters. Above results suggest that captopril produced diuretic action along with renal hemodynamic changes by slight contraction of vas efferense and reduction of reabsorption rate of electrolytes in renal tubules, especilly distal tubules, that may be mediatedby endogenous substances.

  • PDF

Renal Action of TNPA, a Dopamine $D_2$Receptor Agonist, in Dog (Dopamine $D_2$Receptor 효능제인 TNPA의 신장작용)

  • 고석태;황명성
    • YAKHAK HOEJI
    • /
    • v.45 no.2
    • /
    • pp.205-213
    • /
    • 2001
  • The dopaminergic receptors were consisted of two distinct subtypes, $D_1$and $D_2$, each having different function. The present study was attempted to investigate the effects of R(-)-2,10,11-trihydroxy-N-n-propylnoraporphine (TNPA), a dopamine $D_2$receptor agonist, on renal function in dog. TNPA (5.0~15.0 $\mu$g/kg), when given into the vein, produced a dose-dependently antidiuresis along with the decrease in osmolar clearance ( $C_{osm}$) and urinary excretion of sodium and potassium ( $E_{Na}$ , and $E_{K}$). It also increased reabsorption rates of sodium and potassium in renal tubules ( $R_{Na}$ , $R_{K}$) without any changes in glomerular filtration rate (GFR), renal plasma flow (RPF) and free water clearance ( $C_{H2o}$). TNPA (0.5~1.5 $\mu$g/kg/min) infused into a renal artery decreased urine flow both in the experimental and the control kidneys. TNPA (1.5~5.0 $\mu$g/kg) administered via the carotid artery also greatly exhibited antidiuresis even at intravenously ineffective doses. Changes of renal function by TNPA given into both the renal artery and the carotid artery were almost the same aspect to those induced by intravenous TNPA. These results obtained from the present study suggest that TNPA produces antidiuresis by increasing the reabsorption rates of electrolytes in renal tubules, mainly distal tubule, through changing of central function.unction.

  • PDF

Effects of Glibenclamide, an ATP-dependent $K^+$ Channel Blocker, on Renal Function in Dog (ATP 의존성 $K^+$ Channel 차단작용이 있는 Glibenclamide가 개의 신장기능에 미치는 영향)

  • 고석태;임광남
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 1999
  • Glibenclamide(GLY)(1.0 and 3.0 mg/kg), an ATP-dependent $K^+$ channel blocker, when given into the vein in dogs, produced the diuretic action accompanied with the increase of osmolar clearance($C_{osm}$), urinary excretion of $Na^+$ and $K^+$ ($E_{Na}$, $E_K$), and with the decrease in reabsorption rates for $Na^+$ and $K^+$ in renal tubules ($R_{Na}$, $R_K$), and then ratios of $K^+$ against $Na^+$($K^+$/$Na^+$) were decreased. GLY did not affect mean arterial pressure at any doses used. At a low dose(0.1 mg/kg), GLY injected into a renal artery brought about the diurectic action in both experimental and control kidney, however at a higher dose(0.3 mg/kg), GLY appeared significant diuretic action in the control kidney, but not in experimental kidney and the decrease of glomerular filtration rates(GFR), renal plasma flow(RPF), $E_K$, and the increase in $E_{Na}$. In the control kidney, these changes in renal function exhibited the same aspect as shown in intravenous experiments. In experiments given into carotid artery of GLY(0.5 and 1.5 mg/kg), changes in all renal function included the increase in urine volume were the same pattern as shown in intravenous experiments. The above results suggest that glibenclamide produces diuretic action through central function and the action site of the GLY in kidney is the renal distal tubules in dogs.

  • PDF

Effect of Methoxyverapamil on Renal Function of Dogs (개의 신장기능에 미치는 메톡시베라파밀의 영향)

  • Ko, Suk-Tai;Lee, Han-Goo;Na, Han-Kwang
    • YAKHAK HOEJI
    • /
    • v.36 no.1
    • /
    • pp.46-55
    • /
    • 1992
  • Methoxyverapamil, $Ca^{2+}$ channel blocker, when given intravenously by means of bolus, produced the transient increase of urine flow, and then methoxyverapamil was infused in this experiments. Methoxyverapamil, when infused into vein, elicited the increase of urine flow ancampanied with the increased glomeralar filtration rate(GFR), renal plasma flow(RPF), excretion amounts of sodium and potassium in urine($E_{Na},\;E_k$) and osmolar clearance(Cosm), wherease produced the no change of free water clearance($C_{H2O}$) and the reduction of reabsorption rates of sodium and potassium in reral tubules($R_{Na},\;R_k$). Methoxyverapamil, when infused into a renal artery, exhibited the diuretic action in only infused Kidney, at this time changes of renal function were the same aspect to that of intravenously infused methoxyverapamil. Methoxyverapamil, when infused into a carotid artery, exhibited the decreased urine flow along with the reduction of Cosm, $C_{H2O}\;and\;E_{Na}$. Above results suggest that methoxyverapamil possess both the diuretic action by direct action in kidney and antidiuretic action through the central function.

  • PDF

Renal Action of Raclopride, a Dopamine $D_2$ Receptor Antagonist, in Dogs (Dopamine $D_2$ Receptor 차단제인 Raclopride의 신장작용)

  • 고석태
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.683-693
    • /
    • 2001
  • This study was attempted to investigate the effect of raclopride, a dopamine $D_2$ receptor antagonist, on renal function in dog. Raclopride (70-220$\mu\textrm{g}$/kg), when given intravenously, Produced antidiuresis along with the decrease in free water clearance ( $C_{H_2O}$), urinary excretion of sodium and potassium ( $E_{Na}$ , $E_{K}$), partially decreased osmolar clearance ( $C_{osm}$) and increased reabsorption rates of sodium and potassium in renal tubules ( $R_{Na}$ , $R_{K}$). Raclopride administered into a renal artery did not influence on renal function in small doses (10 and 30$\mu\textrm{g}$/kg), whereas exhibited the decrease of urine volume (Vol) and $C_{H_2O}$ both in experimental and control kidney in much dose (100$\mu\textrm{g}$/kg), at this time, the decreased rates of both Vol. and $C_{H_2O}$) were more prominent in control kidney rather than that elicited in experimental kidney, and then only via was decreased in control kidney but increased in experimental kidney. Raclopride administered via carotid artery (30-200$\mu\textrm{g}$/kg) did not influence at all on renal function. Antidiuretic action induced by raclopride given intravenously was not affected by renal denervation. Raclopride given into carotid artery was little effect on renal function without relation to renal denervation. Above results suggest that raclopride produces antidiuresis by potentiation of antidiuretic hormone (ADH) action in blood without increase of ADH secretion in posterior pituitary gland, it is not related to renal nerve function in dogs.ogs.s.

  • PDF

Influence of Intracerebroventricular Yohimbine on the Renal Function of the Rabbit (가토 신장기능에 미치는 측뇌실내 Yohimbine의 영향)

  • Kook, Young-Johng;Kim, Kyung-Keun;Kim, Sei-Jong
    • The Korean Journal of Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.119-127
    • /
    • 1985
  • The renal function is under regulatory influence of the central nervous system, mainly through activation of sympathetic nerve to the kidney, and it was recently reported that clonidine, an agonist to ${\alpha}_2$-adrenoceptors, induces diuresis and natriuresis when injected directly into a lateral ventricle of the rabbit brain (i.c.v.). This study was undertaken, therefore, to obtain further information as to the role of the central ${\alpha}_2$-adrenoceptors in regulating renal function, by observing the effects of i.c.v. yohimbine, a specific antagonist of adrenoceptors of ${\alpha}_2$-type, on the rabbit renal function, and to elucidate the mechanism involved in it. With 10 ${\mu}g/kg$ i.c.v. of yohimbine sodium excretion transiently increased along with increasing tendency of urine flow, renal plasma flow and glomerular filtration rate. These responses decreased with increasing doses. With 100 and 300 ${\mu}g/kg$ i.c.v. marked antidiuresis and antinatriuresis as well as profound decreases of renal perfusion and glomerular filtration were noted. Systemic blood pressure transiently increased. In reserpinized rabbits, 100 ${\mu}g/kg$ yohimbine i.c.v. did not produce any significant changes in urine flow, sodium excretion as well as in renal hemodynamics. The pressor response was also abolished. In preparations in which one kidney was denervated and the other left intact as control, i.c.v. yohimbine elicited typical antidiuretic antinatriuretic response in the innervated control kidney, whereas the denervated experimental kidney responded with marked diuresis and increases in excretory rates of sodium and potassium and in osmolar clearance in spite of absence of increased filtration and perfusion . Systemic blood pressure responded as in the normal rabbits. These observations indicate that i.c.v. yohimbine affects renal function in dual ways in opposite directions, the first being the antidiuretic antinatriuretic effects which results from decreased renal perfusion and glomerular filtration due to sympathetic activation and which is predominantly expressed in the normal rabbits, and the second less apparent effect being the diuretic and natriuretic action which is not mediated by nerve pathway but brought about by some humoral mechanism and which is effected by decreased sodium reabsorption in the tubules, possibly of the proximal portion.

  • PDF