• Title/Summary/Keyword: exchange coupling energy

Search Result 51, Processing Time 0.019 seconds

Reflection-amplitude Approximation for the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B. C.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.191-199
    • /
    • 2000
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from the asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

Effect of the Phase Factor of the Reflection Amplitude on the Interlayer Exchange Coupling in (001) Co/Cu/Co Multilayers

  • Lee, B.C.
    • Journal of Magnetics
    • /
    • v.6 no.2
    • /
    • pp.43-46
    • /
    • 2001
  • The reflection-amplitude approximation is used to calculate the interlayer exchange coupling in (001) Co/Cu/Co multilayers. The dependence of the phase factor of the reflection amplitude on the energy and wave vector is included. The contribution of each period is calculated and the results are compared with those from asymptotic behavior. It is shown that the energy and wave-vector dependence of the phase factor may affect the interlayer exchange coupling significantly.

  • PDF

Spin Exchange Coupling in Dimethoxo-Bridged Dichromium(III) Complexes: A Density Functional Theory Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.963-968
    • /
    • 2008
  • For the [$Cr_2(H_2tmp)_2Cl_4$] compound, simplified models with two bridging methoxo ligands have been studied. The influence of the bridging Cr-O-Cr bond angles on the exchange coupling between metal atoms in the model compound has been analyzed by means of density functional calculations with the broken-symmetry approach. Coupling constant calculated for the full structure is in good agreement with the experimentally reported value, confirming the validity of the computational strategy used in this work to predict the exchange coupling in a family of related dinuclear Cr(III) compounds. The calculations indicate a good correlation between the calculated coupling constant and the sum of the squared energy gap of three pairs of metal $t_{2g}$ OMSOs with a limited variation of the Cr-O-Cr angle. The spin density distribution and the mechanism of magnetic coupling interactions are discussed.

Magnetic Exchange Coupling at The Interface of MR/TbCo Thin Films (자기저항 헤드용 MR/TbCo 박막의 자기교환 결합)

  • 서정교;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • To simulate the characteristics of magnetic exchange coupling at the interface of MR/TbCo thin films, the directions of magnetizations were calculated by minimizing energy in the films. Newton method and Gauss-Seidel method were used. The width of M-H curve increased with TbCo anisotropy constant, and with the thickness of the transition region of TbCo layer. Hysteresis loop width became extremely narrow (less than 10 Oe of coercivity), when the TbCo transition region length was $400\;\AA$. Also the hysteresis loop of films with low interfacial exchange coupling constant was similiar to that of short transition region length. When interfacial exchange coupling constant was 1/100 of perfect coupling, hysteresis loop showed a coercivity of less than 10 Oe. Comparing the measured hysteresis loop of a fabricated sample with that of simulated one, exchange coupling con¬stant could be estimated.

  • PDF

Study on Reduction of Curtailment of Renewable Generation based on Green Hydrogen Sector Coupling (그린수소 기반 섹터 커플링 통한 재생에너지 출력제한 경감효과 연구)

  • Jeon, Wooyoung;Kim, Jin-yi;Lee, Seongwoo
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.50-59
    • /
    • 2022
  • The Korean government announced the "1st Basic Plan for the Transition to Hydrogen Economy" in 2021 and declared the establishment of a hydrogen industry ecosystem by 2040. To build a low-carbon power system, resources that can efficiently accommodate renewable energy are required, and green hydrogen is considered a potential solution. This study analyzed the economic feasibility of green hydrogen-based sector coupling to reduce curtailment of renewable generation in the Jeju power system by 2025 under the scenario of with or without HVDC#3. The result showed that HVDC#3 significantly reduced the frequency of curtailment from 16.1% to 3.0%. In addition, green hydrogen-based sector coupling was an economically feasible option as result showed an IRR of 4.86% when HVDC#3 was connected and 11.45% when it was not under the condition of achieving 50% curtailment reduction. This study shows that the higher the level of renewable energy deployment, the more delayed the HVDC connection between Jeju and the main land, and the lower the SMP, the more economically feasible the green hydrogen-based sector coupling is. Furthermore, this study suggests that the policy goal of completely reducing curtailment is not economically efficient.

Analysis of Exchange Coupling Energy by Ferromagnetic Resonance Method in CoFe/MnIr Bilayers (강자성 공명법을 이용한 CoFe/MnIr 박막의 교환 결합 에너지 분석)

  • Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.204-209
    • /
    • 2012
  • We measure the ferromagnetic resonance signals in order to analyze the exchange coupling energy due to the uncompensated antiferromagnetic spins in exchange coupled CoFe/MnIr bilayers. The exchange bias fields ($H_{ex}$) and rotatable anisotropy fields ($H_{ra}$) are obtained from the ferromagnetic resonance fields measured with in-plane angle in thermal annealed samples with $t_{AF}$= 0, 3, and 10 nm. The sum of the $H_{ex}$ and $H_{ra}$ do not depend on the MnIr thickness, which means that all the uncompensated AF spins are aligned to one direction in $300^{\circ}C$ annealed samples. Therefore, the uncompensated AF spins are divided into two different parts. One parts are fixed at the interface between CoFe/MnIr bilayers and induces the $H_{ex}$, other parts are rotatable with magnetic field and induces the $H_{ra}$. Finally, the exchange coupling energy can be expressed by the sum of the exchange bias energy and rotatable anisotropy energy.

Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles (나노 연/경자성 분말 재료를 이용한 Exchange-coupling 자석의 제조 기술)

  • Kim, Jong-Ryoul;Cho, Sang-Geun;Jeon, Kwang-Won
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.225-230
    • /
    • 2011
  • Magnetic materials has been applied to various fields due to their energy convertible properties between electrical and mechanical energy. Particularly, permanent magnets have been currently attracted much attention because they produce external magnetic field without any electrical current. For high efficiency, a demand for permanent magnets containing rare earth elements has been continuously increased, which abruptly raises the price and causes the supply difficulty of rare earth materials. Therefore, the development of permanent magnets with less or without rare earth elements become a urgent issue. In this report, the current trend and major issues on high efficiency permanent magnets, particularly exchange-coupling magnets, are discussed.

Effect of a Ferromagnetic Layer Thickness on a Narrow Domain Wall Width (좁은 자벽의 두께에 강자성층의 두께가 미치는 영향)

  • Lim, Ho-Tack;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.303-306
    • /
    • 2005
  • Effect of a ferromagnetic layer thickness on a narrow domain wall width is investigated. It is found that the narrow domain wall is formed in ferromagnetic/nonmagnetic/ferromagnetic multi layer structure with a loc at interlayer exchange coupling, and that the width of the narrow domain wall is affected by the ferromagnetic layer thickness. We performed micromagnetics simulations for the $Fe_1/Cr/Fe_2$ system with the local interlayer exchange coupling, with fixed thickness (20-nm) of $Fe_2$ layer and various $Fe_1$ layer thickness (1, 2, 4, and 6 nm). Consequently, we confirmed that the thinner the $Fe_1$ layer thickness, the thinner the width of the domain wall is formed, because of the surface energy nature of the interlayer exchange coupling.

Temperature Dependence of the Rate Constants of the VV Energy Exchange for N$_2$(v=1)+O$_2$(v=0)$\rightarrow$N$_2$(v=0)+O$_2$(v=1)

  • Ree, Jong-Baik;Chung, Keun-Ho;Kim, Hae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.241-245
    • /
    • 1986
  • The vibration-vibration energy exchange of $N_2(v=1)+O_2(v=0){\to}N_2(v=0)+O_2(v=1)$ has been investigated, in particular, at low temperatures. The energy exchange rate constants are calculated by use of the solution of the time-dependent Schrodinger equation with the interaction potential of the colliding molecule as a perturbation term. The predicted rate constants are significantly agree with a experimental values in the range of 295∼$90^{\circ}K$. The consideration of the VV-VT coupling decreases the predicted pure VV energy exchange value by a factor of ∼2. When the collision frequency correction is introduced, the VV-VT rate constant is consistent with the observed value in the liquid phase. The consideration of the population of the rotational energy level increases the VV-VT value significantly.

Increment of the Exchange Coupling in Fe-Ni Alloy Thin Films Deposited with a Bias Magnetic Field

  • Han, Kyung-Hunn;Kim, Jung-Gi;Cho, Jae-Hun;Lee, Suk-Mock
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.77-82
    • /
    • 2006
  • The structure and magnetic properties of Fe-Ni films, deposited by DC magnetron sputtering on Si(111) wafer, have been studied. The spin wave stiffness constant is determined by Brillouin light scattering (BLS) and compared with the value obtained from magnetization measurements. The range of exchange interaction was determined as 0.4 atomic distances in the film deposited in a bias magnetic field, which is 1/2 that in the film grown in no bias magnetic field. The results show that the dimensions of exchange coupling increased by the sputtering in the magnetic field.