• Title/Summary/Keyword: excess sludge reduction

Search Result 26, Processing Time 0.035 seconds

Sludge Reduction by Mechanical Solubilization in the Aerobic Digestion (호기성소화에서 가용화가 슬러지 감량화에 미치는 영향)

  • Youn, Sang Hyun;Jang, Hyun-sup;Hwang, Sun-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.763-770
    • /
    • 2006
  • The purpose of this study was to investigate the effects of mechanical(ball-mill) solubilization of excess sludge especially focused on the TSS(total suspended solid) reduction during the conventional aerobic digestion of sewage sludges including primary and/or excess sludge, HRT was examined at the 10 days and 20 days. According to the results of this study, TSS removal efficiency of solubilized excess sludge was almost two times higher than that of non-solubilized excess sludge. And as the proportion of the primary sludge increased, TSS removal efficiency became worse because primary sludge rarely contained microbial cells which could be easily solubilized physically. It was also proved that by the application of proper solubilization techniques to the excess sludge, HRT for the aerobic digestion could be lessened(above 50%) dramatically keeping the same or better digestion performance. The fact that between primary and excess sludges, only the excess sludge is quite effective in the sludge solubilization and in it's reduction says that excess sludge releasing sources are key-point in the sludge cake reduction field as a source control.

Evaluation of Excess Sludge Reduction in the OSA Process using Kinetic Parameter and Mass Balance (동역학계수 및 물질수지를 이용한 OSA공정의 잉여슬러지 감량능 평가)

  • Nam, Duck-Hyun;Jang, Hyung-Suk;Ha, Kuem-Ryul;Kim, Joon-Kyu;Ju, Jae-Young;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.4
    • /
    • pp.530-538
    • /
    • 2009
  • The Oxic-Settling-Anaerobic (OSA) treatment process, a modified Conventional Activated Sludge (CAS) process, was developed for the purpose of sludge reduction. The insertion of a sludge holding tank into a sludge return line, an anaerobic reactor, forming an OSA process, may provide a cost-effective way of reducing excess sludge production during a process. The OSA process was evaluated for its sludge reduction ability by kinetic parameter and mass balance, with an observed excess sludge reduction of 63.5%, as $P_{X.VSS}$, compared with the conventional activated sludge process.

A Study on the Sludge-reduced Sewage Treatment Process Combined with Sludge Solubilization Technique Using Alkalophiles (호알칼리미생물을 이용한 슬러지감량형 하수처리공정 연구)

  • Shin, Kyung-Sook;Kim, Yoon-Seok;Han, Dae-Hoon;Han, Woon-Woo;Rhee, Young-Ha;Hur, Hyung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.737-744
    • /
    • 2007
  • Recently, one of the most interesting topic in the field of wastewater treatment is the disposal of excess sludge. The new concept of excess sludge reduction with recirculation of solubilized sludge via effective microorganisms for cell disruption within the wastewater treatment process has been developed in this study. The alkalophiles for degradation of sludge cell wall were isolated as Exiguobacterium sp., which could be more effectively solubilized sludge in the anaerobic condition. The SCOD of solubilized excess sludge by Exiguobacterium sp. was up to about 2,000mg/L and average TN and TP concentration of solubilized component were 117mg/L and 58mg/L, respectively and C/N ratio was more than 17. To investigate the effects of solubilized sludge by alkalophiles on excess sludge reduction and nutrient removal efficiency, the pilot plant of $DF^{(S)}-MBR$ process, combined with membrane bioreactor and sludge solubilization tank, was operated. In the control run(without sludge solubilization), the daily sludge production was about 4.54 kgMLVSS/day. However, in the $DF^{(S)}-MBR$(with sludge solubilization), the daily sludge production was decreased to 1.39kgMLVSS/day. The effluent quality satisfied the effluent regulation in both cases. Furthermore, the $DF^{(S)}-MBR$ showed relatively better TN removal efficiency in spite of high influent loading. So we concluded that the solubilized excess sludge by alkalophiles was effectively degraded in the MBR process as the carbon source and 70% of sludge reduction efficiency can be achieved.

A Study on Volume Reduction of Waste Sludge by Aerobic Thermophilic Bacteria (호기성 호열미생물에 의한 하수슬러지 감량화 효율에 관한 연구)

  • Bae, Yoon-Sun;Kim, Soon-Young;Nam, Duck-Hyun;Park, Chul-Hwi;Kim, Jin-Su;Takada, Kazu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.497-505
    • /
    • 2005
  • Domestic Sewage Treatment Plants are mostly based on biological treatment, in which large amounts of excess sludge are generated and occupy about 40 ~ 60% of the total sewage treatment costs. Several methods for sludge treatment has been so far reported as upgrading biodegradation of sludge; heat treatment, chemical treatment, including thermo-alkali and ozone, mechanical treatment including ultrasonic pulverization. But, it has a limitation in case of reducing the amount of excess sludge which are already producted. In this study, application of excess sludge reduction process using thermophilic aerobic bacteria for activated sludge was examined. The research was carried out two different stage. one for a biological wastewater treatment and the other for a thermophilic aerobic solubilization of the waste sludge. A portion of excess sludge from the wastewater treatment step was into the thermophilic aerobic sludge solubilization reactor, in which the injected sludge was solubilized by thermophilic aerobic bacteria. The solubilized sludge was returned to the aeration tank in the wastewater treatment step for its further degradation. Sludge solubilization reactor was operated at $63{\pm}2^{\circ}C$ with hydraulic retention time(HRT) of 1.5 ~ 1.7 day. Control group was operated with activated sludge process(AS) and experiment group was operated with three conditions(RUN 1, RUN 2, RUN3). RUN 1 was operated with AS without sludge solubilization reactor. RUN 2 were operated with AS with sludge solubilization reactor to examine correlation between sludge circulation ratio and sludge reduction ratio by setting up sludge circulation ratio to 3. RUN 3 was operated with sludge circulation ratio of 3 and MLSS concentration of 1,700~2,000mg/L to examine optimum operation condition. The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge The quantity of excess sludge production was reduced sharply and in operation of RUN 3, sludge solubilization ratio and sludge reduction ratio were 53. 7%, 95.2% respectively. After steady state operation, average concentration of TBOD, SBOD, $TCOD_{Cr}$, $SCOD_{Cr}$, TSS, VSS, T-N, T-P of effluent were 4.5, 1.7, 27 .8, 13.8, 8.1, 6.2, 15.1, 1.8mg/L in the control group and were 5.6, 2.0, 28.6, 19.1, 9.7, 7.2, 16.1, 2.0mg/L in the experimental group respectively. They were appropriate to effluent standard of Sewage Treatment Plants.

Performance Evaluation of Electrocoagulation and Electrodewatering for the Reduction of Water Content in Wastewater Sludge (전기응집 및 탈수 시스템을 이용한 슬러지 함수율 저감 특성)

  • 이재근;김영환;신희수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1098-1107
    • /
    • 2001
  • This study is to develop the pretreatment for the excess and digested sludge by elector-coagulation and dewatering. Electrocoagulation is applied to excess and digested sludge before transferring to the pistion type for dewatering. Piston type filter press as a laboratory scale plant was used to estimate the dewaterability. MMD of excess sludge was increased from initial diameter of particles ($34.16{\mu}m$) to the 87%($64.01{\mu}m$) after electrocoagulation. Al electrode is more effective than Fe electrode for the dewaterabiltity of excess sludge Electrodewatering after electrocoagulation as pretreatment makes the water content of sludge cake 50~60 wt%.

  • PDF

A study on reduction of excess sludge in activated sludge system from a petrochemical plant using electro fenton process (전기펜톤공정을 이용한 석유화학공장 폐활성슬러지의 감량화 가능성 평가)

  • Chung, Chong Min;Kim, Kyung Il;Shim, Natalia;Park, Chul Hee;Lee, Sang Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.669-678
    • /
    • 2009
  • The reduction of excess activated sludge from petrochemical plant was investigated by the electro fenton (E-Fenton) process using electrogenerated hydroxyl radicals which lead to mineralization of activated sludge to $CO_2$, water and inorganic ions. Factors affecting the disintegration efficiency of excess activated sludge in E-Fenton process were examined in terms of five criteria: pH, $H_2O_2/Fe^{2+}$ molar ratio, current density, initial MLSS (mixed liquid suspended solids) concentration, $H_2O_2$ feeding mode. TSS total suspended solid and $TCOD_{cr}$ reduction rate increased with the increasing $H_2O_2/Fe^{2+}$ molar ratio and current density until 42 and $6.7 mA/cm^2$, respectively but further increase of $H_2O_2/Fe^{2+}$ molar ratio and current density would reduce the reduction rate. On the other hand, as expected, increasing pH and initial MLSS concentration of activated sludge decreas TSS and $TCOD_{cr}$ reduction rate. The E-Fenton process was gradually increased during first 30 minutes and then linearly proceed till 120 minutes. The optimal E-Fenton condition showed TSS reduction rate of 62~63% and $TCOD_{cr}$ (total chemical oxygen demand) reduction rate of 55~56%. Molar ratio $H_2O_2/Fe^{2+} = 42$ was determined as optimal E-Fenton condition with initial $Fe^{2+}$ dose of 5.4 mM and current density of $6.7{\sim}13.3 mA/cm^2$, initial MLSS of 7,600 mg/L and pH 2 were chosen as the most efficient E-Fenton condition.

Change of Microbial Community on Ozonation of Sewage Sludge to Reduce Excess Sludge Production (폐슬러지 감량화 및 재활용을 위한 오존 처리시 하수슬러지내의 미생물 군집구조의 변화)

  • Hong, Jun-Seok;Lim, Byung-Ran;Ahn, Kyu-Hong;Maeng, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2004
  • The change of the microbial community structure in excess sludge of different sewage treatment plants by ozone treatment was investigated by quinone profiles. The resulting ozone dosage ranged from 0.1 to $0.4gO_3/gTS$. In terms of overall sludge reduction, more than 50% reduction of the total sludge mass could be achieved by ozone treatment at $0.4gO_3/gTS$. Quinone concentration and type in sludge of different treatment plants were remarkably decreases with increasing ozone dose. Ubiquinones(UQs)-8, -10 and MK-8 were still remained in the ozonized sludge at $0.4gO_3/gTS$. The results of this study showed that the remaining microorganisms belong to UQs-8, -10 and MK-8 were difficult to destruct cell membrane or wall by ozonation. Fecal Streptococci and Salmonella were not detected at ozone dose of $0.2gO_3/gTS$, but Fecal Coliform was not detected at ozone dose of $0.4gO_3/gTS$.

Effect of 3,3',4',5-Tetrachlorosalicylanilide on Reduction of Excess Sludge and Nitrogen Removal in Biological Wastewater Treatment Process

  • Rho, Sang-Chul;Nam, Gil-Nam;Shin, Jee-Young;Jahng, Deok-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • A metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), was used to reduce excess sludge production in biological wastewater treatment processes. Batch experiments confirmed that 0.4 mg/l of TCS reduced the aerobic growth yield of activated sludge by over 60%. However, the growth yield remained virtually constant even at the increased concentrations of TCS when cultivations were carried out under the anoxic condition. Reduction of sludge production yield was confirmed in a laboratory-scale anoxic-oxic process operated for 6 months. However, it was found that ammonia oxidation efficiency was reduced by as much as 77% in the presence of 0.8 mg/l of TCS in the batch culture. Similar results were also obtained through batch inhibition tests with activated sludges and by bioluminescence assays using a recombinant Nitrosomonas europaea (pMJ217). Because of this inhibitory effect of TCS on nitrification, the TCS-fed continuous system failed to remove ammonia in the influent. When TCS feeding was stopped, the nitrification yield of the process was resumed. Therefore, it seems to be necessary to assess the nitrogen content of wastewater if TCS is used for reducing sludge generation.

Reduction and Stabilization of Sewage Sludge by Ozonation (오존을 이용한 하수슬러지의 감량화와 안정화)

  • Lee, Chang-geun;Hwang, Eun-ju;Kang, Seong-jae;Bin, Jung-in;Lee, Byung-hun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.290-295
    • /
    • 2004
  • In this study, ozone was adopted for the reduction and stabilization of waste sludge from the municipal sewage treatment plant. The waste sludge used in the experiments was primary sludge, excess sludge and a mixture of the two. The sludge cells and flocs were disrupted by ozonation resulting in the reduction of TSS and VSS concentrations. In the case of the primary sludge with a concentration of 20 gTS/L, the TSS and VSS concentrations were reduced 28%, 33% and the TCOD concentration was reduced 20% respectively. The consumption of ozone was $0.18gO_3/gSS$. In the case of the excess sludge with a concentration of 7.5 gTS/L, the TSS and VSS concentrations were reduced 37%, 41%, and the TCOD concentration was reduced 19% respectively. The consumption of ozone was $0.33gO_3/gSS$. In the case of the mixed sludge of 9.3 gTS/L, the TSS and VSS concentrations were reduced by 45%, 53%, and the TCOD was reduced 26% respectively. The desirable consumption of ozone was $0.27gO_3/gSS$. As ozonation proceeded, the level of SCOD increased due to the release of intracellular materials. However TCOD was reduced due to mineralization resulting from the transformation of organic materials to inorganic materials.

A Study on the Thermal Solubilization Characteristics of Highly Thickened Excess Sludge in Municipal Wastewater Treatment Plant (하수처리장에서 발생하는 고농축 잉여슬러지의 열적가용화 특성에 관한 연구)

  • Kim, Eunhyuk;Park, Myoung Soo;Koo, Seulki
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.5-13
    • /
    • 2022
  • The current environmental problem is that environmental pollution is accelerating due to the generation of large amounts of waste and indiscriminate consumption of energy. Fossil fuels, a representative energy production fuel, are burned in the process of producing energy, generating a large amount of greenhouse gases and eventually causing climate change. In addition, the amount of waste generated worldwide is continuously increasing, and environmental pollution is occurring in the process of waste treatment. One of the methods for simultaneously solving these problems is the energy recovery from and reduction of organic wastes. Sewage sludge generated in sewage treatment plants has been treated in various ways since ocean disposal was completely prohibited, but the amount generated has been continuously increasing. Since the sewage sludge contains a large amount of organic materials, it is desirable to recover energy from the sewage sludge and reduce the final discharged waste through anaerobic digestion. However, most of the excess sludge is a mass of microorganisms used in sewage treatment, and in order for the excess sludge to be anaerobically digested, the cell walls of the microorganisms must be destroyed first, but it takes a lot of time to destroy the cell walls, so high rates of biogas production and waste reduction cannot be achieved only by anaerobic digestion. Therefore, the pre-treatment process of solubilizing excess sludge is required, and the thermal solubilization process is verified to be the most efficient among various solubilization methods, and high rates of biogas production and waste reduction can be achieved by anaerobic digestion after destroying cell walls the thermal solubilization process. In this study, when pretreating TS 10% thickened excess sludge through a thermal solubilization system, a study was conducted on solubilization characteristics according to retention time and operating temperature variables. The experimental variables for the retention time of the thermal solubilization system were 30 minutes, 60 minutes, 90 minutes, and 120 minutes, respectively, while the operating temperature was fixed at 160℃. The soulbilization rates calculated through TCOD and SCOD derived from the experimental results increased in the order of 12.11%, 20.52%, 28.62%, and 31.40%, respectively. And the variables according to operating temperature were 120℃, 140℃, 160℃, 180℃, and 200℃, respectively, while the operating retention time was fixed at 60 minutes. And the solubilization rates increased in the order of 7.14%, 14.52%, 20.52%, 40.72%, and 57.85%, respectively. In addition, TS, VS, T-N, T-P, NH4+-N, and VFAs were analyzed to evaluate thermal solubilization characteristics of thickened excess sludge. As a result, in order to obtain 30% or more solubilization rate through thermal solubilization of TS 10% thickened excess sludge, 120 minutes of retention time is required when the operating temperature is fixed to 160℃, and 170℃ or more of operating temperature is needed when the operating time is fixed to 60 minutes.