• Title/Summary/Keyword: excess air factor

Search Result 26, Processing Time 0.03 seconds

The Effects of Non-Stoichiometry and Sintering Temperature on the Magnetic Properties of Ni-Zn Ferrites (비양론 화학적 조성 및 소결온도가 Ni-Zn Ferrite 의 자기적 성질에 미치는 영향)

  • 박준철;임호빈
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 1980
  • The effect of non-stoichimetry and sintering temperature on the magnetic properties of materials in the system $Ni_{0.39}Zn_{0.61}Fe_{2.0+x}O_4$ have been investigated. The value of x used in initial weighing of oxides were varied from -0.04 to -0.12. The value of x, however, appears to be from +0.04 to -0.04 after ferrite powder preparation due to iron pick up during ball mill mixing and grinding. The densities of specimens which were deficientinrion were higher than those with excess ion. Specimens with near stoichiometric composition showed maximum initial permeability an dminimum coercivity whereas high values of quality factor (Q) were observed in iron deficient specimens. The quality factor decreased monotonically with increasing sintering temperature, but the permeability showed maxima with increasing sintering temperature. Thus highest value of figure of merit $\mu$Q was obtained in composition $Ni_{0.39}Zn_{0.61}Fe_{1.98O4}$ sintered at 100$0^{\circ}C$ for 3 hrs. in an air atmosphere.

  • PDF

Assessment of Health Risk Posed by Orgnic Substances of Suspended Particulate Matters in a Heavy Traffic Area of Seoul (교통 혼잡지역의 대기 부유분진중 유기혼합물에 의한 발암위해성 평가)

  • Shin, Dong-Chun;Lim, Young-Wook;Park, Seong-Eun;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.5
    • /
    • pp.567-576
    • /
    • 1996
  • Air pollution has been recognized for many years as a factor which heightens the risk of cancer. Extractable polycyclic organic matters in air particulates have been recognized as to have carcinogenic effects. This study examined the health risks posed by organic substances of air particulates in Seoul based on methodelogies that have been developed for conducting risk posed by organic substances of sir particulates in Seoul based on methodologies that have been developed for conducting risk assessment of complex -chemical-mixture. The data used in this study was obtained from air samples collected in a heavy traffic area of Seoul (Shinchon) from 1986 to 1994. The mean concentration of total supended pariculates was 158.0.mu.g/m/msup 3/, 5% of which is consisted of organic matter. The excess cancer risk from benzo(a)pyrene (BaP) was estimated to be 3.48.times.10$^{-6}$ by applying BaP unit risk estimates to the mean concentration. 8.74ng/m BaP equivalents of potency method was 1.0.times.10$^{-3}$ . The calculated risk from EOM were comparably higher than that from benzo(a)pyrene and exceeded the acceptable risk level.

  • PDF

Emission Characteristic for High Efficiency and Low NOx of Externally Oscillated Oil Burner (외부가진 오일 버너의 고효율 저 NOx 배출특성)

  • Kim, Seong-Cheon;Song, Hyoung-Woon;Chun, Young-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.693-700
    • /
    • 2006
  • The important factor for the development of burner is the achievement of low emissions with maintaining combustibility. In case of maintaining high temperature flame and excess air to increase the combustibility, it is possible to achieve high combustion efficiency, due to the reduction of UHC(unborn hydrocarbon), carbon monoxide and soot. However, it is difficult to reduce the thermal NOx produced in the high temperature flame. To solve this problem, we developed externally oscillated oil burner which is possible for the high efficiency combustion and low NOx emission, simultaneously. The experiment of flame characteristics and NOx reduction were achieved according to the variation of frequency, amplitude and air velocity. Frequency, amplitude and air velocity are the most important parameter. The optimum operating conditions are frequency 1,900 Hz, amplitude 3 $V_{pp.}$ and air velocity 6.8 m/s. Reduction of NOx and CO are 47% and 22%, respectively.

Day and Night Distribution of Gas and Particle Phases Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations in the Atmosphere of Seoul (서울 대기 중 기체 및 입자상 다환방향족탄화수소 (PAHs)의 낮·밤 분포 특성)

  • Lim, Hyung Bae;Kim, Yong Pyo;Lee, Ji Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.4
    • /
    • pp.408-421
    • /
    • 2016
  • Day and night sampling for gas and particle phases PAHs were carried out in Seoul to characterize gas and particle phases PAHs concentrations in day and night times. There was no significant difference between day and night time for particle phase PAHs concentrations and phase distribution of PAHs, while, gas phase PAHs concentrations in daytime were about 1/2 of nighttime concentrations in both summer and winter due to photochemical reaction of gas phase PAHs during daytime. A high fraction of cancer risk for PAHs was attributed to particle phase PAHs and the excess cancer risk in winter was higher than in summer. The excess cancer risk level of total(gas+particle) PAHs in summer was partially observed when both gas and particle phase PAHs concentrations were considered as risk assessment. Based on the diagnostic ratios and factor analysis of PAHs concentrations, combustion(coal and natural gas) and vehicular emission might be the most significant contributors of PAHs and major factors for determining of PAHs concentration were different between day and night times.

A Study on Air Pollution in Indoor Gymnasiums (실내체육관에서의 공기오염에 관한 연구)

  • 윤승욱;김윤신;이종대;이철민;조용성
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.32-37
    • /
    • 2000
  • Nowadays, a new word called SBS(sick building syndrome) has been come into existence. At the point of time when an interest about indoor air pollution and, according to this, countermeasure plan are internationally. Moreover institutional countermeasure should be attended at national level since indoor air quality in public places where many people gather is directly connected with national health. Especially indoor pollution of indoor stadia where all sorts of sports are held can give rise to every kinds of respiratory ailments to players as well as audiences. So it is presented as a main factor that indoor space of stadia is crowded with players and audiences compared with other kinds of indoor space. Therefore, in this research to analyze pollution degree of indoor circumstance for gymnasium and exercising room of folk wrestling. basketball, judo, wrestling, hapkido, swordsmanship and boxing making indoor gymnasium and exercising room an object, when 7 items were measures such as thermocircumstance(temperature, relative humidity, air current, intensity of illumination), dust, carbon monoxide, and carbon dioxide being based on the indoor environmental standard of the first clause of Article 45 of public utilization service which is showed at public hygiene of the Ministry of Health and Social Affairs, it was showed that indoor temperature, relative humidity, air current and intensity of illumination were over standard amount at the most of folk wrestling gymnasium and exercising room. Indoor density of carbon monoxide was preserved to the extent of standard amount (10ppm) at all gymnasiums but carbon dioxide was not in excess of standard amount(1,000 ppm) at most of gymnasiums. Indoor density of dust induced from respiration exceeded the standard amount (150 $\mu\textrm{g}$/㎥) at all gymnasiums of the folk wrestling. Since the folk wrestling players and participants feel physical subjective symptom seriously, in other words the degree of indoor air pollution at gymnasiums and exercising rooms of the folk wrestling is very high, fundamental solution and countermeasure plan should be presented.

  • PDF

PORE PRESSURE AND EFFECTIVE STRESS IN THE SATURATED SAND-BED UNDER THE VARIATION OF WATER PRESSURE

  • HoWoongShon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.107-119
    • /
    • 2003
  • The behavior of pore pressure and effective stress in a highly saturated sand bed under variations in the water pressure in its surface were investigated to determine the mechanism of the collapse of hydraulic structures during flooding or when attacked by storm waves. The vertical, one-dimensional model was used as a basic model to clarify the effect of water pressure variation on only to the vertical direction. The theoretical results show that a sand bed under variations of water pressure is weakened by an increase in excess pore pressure and that under certain conditions the sand bed will liquefy. Although many factors related to water pressure variation and property of the material determine this phenomenon, the mist important factor seems to be the small amount of air present in the sand bed. The theoretical results reported are verified by experiments.

  • PDF

Chemical Mass Composition of Ambient Aerosol over Jeju City (제주시 지역 미세먼지의 변동과 화학적 구성 특성)

  • Lee, Ki-Ho;Kim, Su-Mi;Kim, Kil-Seong;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.495-506
    • /
    • 2020
  • This study investigated the nitrate formation process, and mass closure of Particulate Matter (PM) were calculated over the urbanized area of Jeju Island. The data for eight water-soluble inorganic ions and nineteen elements in PM2.5 and PM10 were used. The results show that the nitrate concentration increased as excess ammonium increased in ammonium-rich samples. Furthermore, nitrate formation was not as important in ammonium-poor samples as it was in previous studies. According to the sum of the measured species, approximately 45~53% of gravimetric mass of PM remained unidentified. To calculate the mass closure for both PM2.5 and PM10, PM chemical components were categorized into secondary inorganic aerosol, crustal matter, sea salt, trace matter and unidentified matter. The results by the mass reconstruction of PM components show that the portion of unidentified matter was decreased from 52.7% to 44.0% in PM2.5 and from 45.1% to 29.1% in PM10, despite the exclusion of organic matter and elemental carbon.

The influence of significant design factor on CO and NOx emission in gas cooktop burner (가스 쿡탑 버너에서 디자인 형상이 배기배출물에 미치는 영향)

  • Jeong, Yong-Ki;Kim, Yoong-Soo;Yang, Dae-Bong;Kim, Yang-Ho;Ryu, Jong-Wan;Wie, Jae-Hyug;Lim, Jae-Beom;Seok, Jun-Ho;Chang, Yoong-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2192-2197
    • /
    • 2008
  • An experimental study was performed to investigate the effects of configuration of burner and air excess ratio on CO & NOx emission characteristics of the cooktop burners which are used extensively. In this study, the combustion characteristics were investigated with the variation of design factor of cooktop burners. The results showed that as the thermal input increases, flammable region go narrower. With the increase of loading height from the cap to grate, the CO emission decrease owing to the reduction of quenching by flame impingement on the load. Additionally, the CO emission increase with angle of main slot, however the NO emission is almost unaffected.

  • PDF

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.

The Effect of the Excess Air Factor on the Emission Characteristics of the SI Engine Fueled with Gasoline-Ethanol and Hydrogen Enriched Gas (공기과잉률의 변화가 에탄올 및 수소농후가스 혼합연료 기관의 배기 특성에 미치는 영향)

  • Park, Cheol-Woong;Choi, Young;Oh, Seung-Mook;Kim, Chang-Gi;Lim, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.334-342
    • /
    • 2009
  • Trends in the automotive market require the application of new engine technologies, which allows for the use of different types of fuel. Since ethanol is a renewable source of energy and has lower $CO_2$ emissions than gasoline, ethanol produced from biomass is expected to be used more frequently as an alternative fuel. It is recognized that for spark ignition (SI) engines, ethanol has the advantages of high octane number and high combustion speed. Due to the disadvantages of ethanol, it may cause extra wear and corrosion of electric fuel pumps. On-board hydrogen production out of ethanol is an alternative plan. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency and emissions. The combustion characteristics with hydrogen-enriched gaseous fuel from ethanol are also examined. As a result, thermal efficiency increase compared to gasoline. Also, reductions in $CO_2$, NOx, and THC combustion products for ethanol vs. gasoline are described.