• Title/Summary/Keyword: excess Pb

Search Result 119, Processing Time 0.028 seconds

Contamination Assessment of Heavy Metals in River Sediments (For the Surface Sediments from Nakdong River) (하천 퇴적물 내 중금속 오염도 평가에 관한 연구 (낙동강 수계 표층 퇴적물을 대상으로))

  • Kim, Shin;Ahn, Jungmin;Jung, Kangyoung;Lee, Kwonchul;Kwon, Heongak;Shin, Dongseok;Yang, Deukseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.460-473
    • /
    • 2017
  • In order to certificate the contamination assessment of heavy metals in surface sediments from the Nakdong river. Surface sediments were collected of 24 sampling sites (main 14st., tributary 10st.) and analyzed for grain size heavy metals contents. Study area mainly composed of sand (avg. 94.1%) and mean grain size was $1.46{\Phi}$ on average. Heavy metals contents (avg. Al: 12.5%, Zn; 74.4, Cr: 45.3, Li: 26.0, Pb: 17.1, Ni: 10.5, Cu: 7.8, Cd: 0.22 mg/kg) were relatively high contents in the composed of fine sediments. In addition, the results of pearson's correlation coefficient showed that most heavy metals and grain size (silt and clay) were highly correlated. The contents of Zn (6st.) and Ni (1st.) evaluated as moderately polluted, Zn (6st.) evaluated as LEL when compared with sediment quality standard of USEPA and Ontario sediment quality guidelines. Most heavy metals contents were I levels that dose not affected the benthos when compared with sediment pollution evaluation standard of NIER. The results of EX, EF, Igeo and CF showed the contents of Zn, Pb and Cd exceed the background contents and distributing of anthropogenic pollution and evaluated as moderately polluted level. And Nm-08 were relatively high level of contamination in the study area. However as results of PLI (less than 1), all sampling sites were evaluated unpolluted level.

Evaluation of Heavy Metal Contents in Mudflat Solar Salt, Salt Water, and Sea Water in the Nationwide Salt Pan (전국 염전에서 생산된 갯벌천일염, 함수 및 해수의 중금속 함량 평가)

  • Kim, Hag-Lyeol;Yoo, Young-Joo;Lee, In-Sun;Ko, Gang-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.1014-1019
    • /
    • 2012
  • This study was conducted to evaluate the heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan. In mudflat solar salt, moisture contents were significantly different (p<0.001) between regions, ranging from 7.357% to 14.862%. Arsenic (As) content ranged from 0.007 ppm to 0.497 ppm, cadmium (Cd) from 0.000 ppm to 0.101 ppm, plumbum (Pb) from 0.000 ppm to 0.191 ppm, hydrargyrum (Hg) from 0.006 ppb to 0.180 ppb, and copper (Cu) from 0.039 ppm to 4.794 ppm between regions, which were significantly different (p<0.001). Further, As, Cd, Pb, and Hg contents of sea and salt water were not in excess of their criterion points. Our results suggest that heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan were at safe levels. However, continuous management of heavy metal contamination, such as PVC met, is still necessary.

Preparation of PMN-PT-BT/Ag Composite and its Mechanical and Dielectric Properties (PMN-PT-BT/Ag 복합체 제조 및 기계적, 유전적 특성)

  • Lim, Kyoung-Ran;Jeong, Soon-Yong;Kim, Chang-Sam;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.846-850
    • /
    • 2002
  • A PMN-PT-BT/Ag composite was prepared by surface modification with MgO sol with hoping to suppress silver's migration during sintering. The mixture of PbO, $N_2O_5,\;TiO_2\;with\;Mg(NO_3)_2$ instead of MgO was ball milled, the solvent was removed and then the dried powders were calcined at 950$^{\circ}C$/1h. The calcined powder were treated with 3.0 mol% $Ag_2O$ and 1.0 wt% MgO sol and calcined at 550$^{\circ}C$/1h. The dielectrics sintered at 1000$^{\circ}C$/4h under a flowing oxygen showed the density of 7.84g/$cm^3$, the room temperature dielectric constant of 18400, the dielectric loss of 2.4%, the specific resistivity of $0.24{\times}10^{12}{\Omega}{\cdot}cm$. It also showed the bending strength of $120.7{\pm}11.26$ MPa and the fracture toughness of $0.87{\pm}0.002\;MPam^{1/2}$ which were comparable to commercial PZT. The microstructure sonsisted of grains of ∼4${\mu}m$. SEM and SIMS analysis showed that Ag grew as ∼1${\mu}m$ and excess MgO as ∼0.5${\mu}m$.

Organic Carbon Cycling in Ulleung Basin Sediments, East Sea (동해 울릉분지 퇴적물에서 유기탄소 순환)

  • Lee, Tae-Hee;Kim, Dong-Seon;Khim, Boo-Keun;Choi, Dong-Lim
    • Ocean and Polar Research
    • /
    • v.32 no.2
    • /
    • pp.145-156
    • /
    • 2010
  • This study investigated organic carbon fluxes in Ulleung Basin sediments, East Sea based on a chamber experiment and geochemical analyses. At depths greater than 2,000 m, Ulleung Basin sediments have high organic carbon contents (over 2.0%). Apparent sedimentation rates (ASR) calculated from excess $^{210}Pb$ activity distribution, varied from 0.036 to $0.047\;cm\;yr^{-1}$. The mass accumulation rates (MAR) calculated from porosity, grain density (GD), and ASR, ranged from 131 to $184\;g\;m^{-2}\;yr^{-1}$. These results were in agreement with sediment trap results obtained at a water depth of 2100 m. Input fluxes of organic carbon varied from 7.89 to $11.08\;gC\;m^{-2}\;yr^{-1}$ at the basin sediments, with an average of $9.56\;gC\;m^{-2}\;yr^{-1}$. Below a sediment depth of 15cm, burial fluxes of organic carbon ranged from 2.02 to $3.10\;gC\;m^{-2}\;yr^{-1}$. Within the basin sediments, regenerated fluxes of organic carbon estimated with oxygen consumption rate, varied from 6.22 to $6.90\;gC\;m^{-2}\;yr^{-1}$. However, the regenerated fluxes of organic carbon calculated by subtracting burial flux from input flux, varied from 5.87 to $7.98\;gC\;m^{-2}\;yr^{-1}$. Respectively, the proportions of the input flux, regenerated flux, and burial flux to the primary production ($233.6\;gC\;m^{-2}\;yr^{-1}$) in the Ulleung Basin were about 4.1%, 3.0%, and 1.1%. These proportions were extraordinarily higher than the average of world open ocean. Based upon these results, the Ulleung Basin might play an integral role in the deposition and removal of organic carbon.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF

Fabrication of PZT Film by a Single-Step Spin Coating Process

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Nahm, Sahn;Yoon, Seok-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.193-193
    • /
    • 2011
  • To obtain ceramic films, the sol-gel coating technique has been broadly used with heat treatment, but crack formation tend to occur during heat treatment in thick sol-gel films. We prepared PZT thin films by sol-gel method with single-step spin coating process. The PZT solution have been synthesized using lead acetate ($Pb(CH_3COO)_2$), zirconium acetylacetonate ($Zr(OC_3H_7^n)_4$), and titanium diisopropoxide bis(acetylacetonate) 75wt% in isopropanol ($Ti(OC_3H_7^i)_2(OC_3H_7^n)_2$) as starting materials and n-propanol was selected as a solvent. The poly(vynilpyrrolidone) (PVP) was added with 0, 0.25, 0.5, 0.75, and 1 molar ratios to control viscosity of solution. We investigated influence of the viscosity on thickness, microstructure, and electrical properties of final PZT films. Thermo-gravimetric analysis and differential scanning calorimeter (TGA/DSC) was carried out from room temperature to $800^{\circ}C$ in order to measure pyrolysis temperature. Structural characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ferroelectric and dielectric properties were measured by RT66A (Radiant) and impedance analyzer (Agilent), respectively. The thicknesses of PZT films depended on incorporation of an excess amount of PVP. Finally, we obtained PZT films of good quality without crack formation via single-step spin coating.

  • PDF

Analysis of Amperometric Response to Cholesterol according to Enzyme-Immobilization Methods (효소고정화 방법에 따른 콜레스테롤 검출용 바이오센서의 전류 감응도 분석)

  • Ji, Jung-Youn;Kim, Mee-Ra
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.5
    • /
    • pp.731-738
    • /
    • 2011
  • Cholesterol is the precursor of various steroid hormones, bile acid, and vitamin D with functions related to regulation of membrane permeability and fluidity. However, the presence of excess blood cholesterol may lead to arteriosclerosis and hypertension. Moreover, dietary cholesterol may affect blood cholesterol levels. Generally, cholesterol determination is performed by spectrophotometric or chromatographic methods, but these methods are very time consuming and costly, and require complicated pretreatment. Thus, the development of a rapid and simple analysis method for measuring cholesterol concentration in food is needed. Multi-walled carbon nanotube (MWCNT) was functionalized to MWCNT-$NH_2$ via MWCNT-COOH to have high sensitivity to $H_2O_2$. The fabricated MWCNT-$NH_2$ was attached to a glassy carbon electrode (GCE), after which Prussian blue (PB) was coated onto MWCNT-$NH_2$/GCE. MWCNT-$NH_2$/PB/GCE was used as a working electrode. An Ag/AgCl electrode and Pt wire were used as a reference electrode and counter electrode, respectively. The sensitivity of the modified working electrode was determined based on the amount of current according to the concentration of $H_2O_2$. The response increased with an increase of $H_2O_2$ concentration in the range of 0.5~500 ${\mu}M$ ($r^2$=0.96) with a detection limit of 0.1 ${\mu}M$. Cholesterol oxidase was immobilized to aminopropyl glass beads, CNBr-activated sepharose, Na-alginate, and toyopearl beads. The immobilized enzyme reactors with aminopropyl glass beads and CNBr-activated sepharose showed linearity in the range of 1~100 ${\mu}M$ cholesterol. Na-alginate and toyopearl beads showed linearity in the range of 5~50 and 1~50 ${\mu}M$ cholesterol, respectively. The detection limit of all immobilized enzyme reactors was 1 ${\mu}M$. These enzyme reactors showed high sensitivity; especially, the enzyme reactors with CNBr-activated sepharose and Na-alginate indicated high coupling efficiency and sensitivity. Therefore, both of the enzyme reactors are more suitable for a cholesterol biosensor system.

Comparison of Human Health Risk Assessment of Heavy Metal Contamination from Two Abandoned Metal Mines Using Metal Mine-specific Exposure Parameters (국내 폐금속 광산에 특화된 노출인자를 이용한 두 폐금속 광산 중금속 오염에 대한 인체위해성평가 비교)

  • Lim, Tae-Yong;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Soon-Oh
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.6
    • /
    • pp.414-431
    • /
    • 2016
  • There are numerous closed and abandoned mines in Korea, from which diverse heavy metals (e.g., As, Cd, Cu, Pb, Zn) are released into the surrounding soil, groundwater, surface water, and crops, potentially resulting in detrimental effects on the health of nearby residents. Therefore, we performed human risk assessments of two abandoned metal mines, Yanggok (YG) and Samsanjeil (SJ). The exposure parameters used in this assessment were specific to residents near mines and the included exposure pathways were relevant to areas around metal mines. The computed total excess carcinogenic risks for both areas exceeded the acceptable carcinogenic risk ($1{\times}10^{-6}$), indicating that these areas are likely unsafe due to a carcinogenic hazard. In contrast, the non-carcinogenic risks of the two areas differed among the studied receptors. The hazard indices were higher than the unit risk (=1.0) for male and female adults in YG and male adults in SJ, suggesting that there are non-carcinogenic risks for these groups in the study areas. However, the hazard indices for children in YG and female adults and children in SJ were lower than the unit risk. Consumption of groundwater and crops grown in the area were identified as major exposure pathways for carcinogenic and non-carcinogenic hazards in both areas. Finally, the dominant metals contributing to carcinogenic and non-carcinogenic risks were As and As, Cu, and Pb, respectively. In addition, the carcinogenic and non-carcinogenic risks of YG were evaluated to be 10 and 4 times higher than those of SJ, respectively, resulted from the relatively higher exposure concentration of As in groundwater within SJ area. Because of lacking of several exposure parameters, some of average daily dose (ADD) could not be computed in this study. Furthermore, it is likely that the ADDs of crop-intake pathway included some errors because they were calculated using soil exposure concentrations and bioconcentration factor (BCF) rather than using crop exposure concentrations.

Evaluation of mineral, heavy metal and phthalate contents in mudflat solar salt and foreign salt (국내산 갯벌천일염과 외국산 소금의 미네랄, 중금속 및 phthalate 함량 평가)

  • Kim, Hag-Lyeol;Lee, In-Seon;Kim, In-Cheol
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.520-528
    • /
    • 2014
  • The purpose of this study was to evaluated a phthalate, heavy metal contents and physicochemical quality properties in korean mudflat solar salt and foreign salts. DEHP in mudflat solar salt (MSS) was detected a low level (9.00~669.89 ppb), but it was shown a high level excess to 1.5 ppm criteria in the foreign solar salt (FSS) 5 type (3,440.64, 3,266.56, 2,189.65, 4,010.69, 4,554.20 ppb) and foreign large solar salt (FLSS) 1 type (1,983.27 ppb). Also, DEHP in FSS 2 type (930.15, 1,310.07 ppb) and FLSS 1 type (924.92 ppb) was detected a high level not excess to criteria. No detected DMP, DEP, DIBP, DBP, DAP, BBP, DCHP and DEHA contents in MSS and foreign salt (FS). Na ion was shown a significantly higher level (p<0.05) in FS (407,345.87~426,612.14 ppm) than in MSS (363,633.98 ppm), but it was shown a high level in Mg (p<0.01), K (p<0.05), Ca ion (p<0.05) of FSS compared to foreign refined salt (FRS). Cl ion (532,727.07 ppm) of MSS was the most low level (p<0.001) compared to FS, but it was shown a high level (p<0.001) in Br ion (625.07 ppm). $SO_4$ ion was not shown a significant difference in DS and FS. It was display a high level in Mn of MSS, and Al, Fe of FLSS. Heavy metal contents (As, Cd, Pb and Hg) in MSS and FS was not significant difference, it was safety level as edible salt.