• Title/Summary/Keyword: exceedance probability

Search Result 118, Processing Time 0.019 seconds

Seismic fragility analysis of conventional and viscoelastically damped moment resisting frames

  • Guneyisi, Esra Mete;Sahin, Nazli Deniz
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.295-315
    • /
    • 2014
  • This paper presents the results of an analytical study on seismic reliability of viscoelastically damped frame systems in comparison with that of conventional moment resisting frame systems. In order to exhibit the reliability of the frame systems with viscoelastic dampers, seismic reliability analyses were carried out for steel framed buildings, 5 and 12 storeys in height, designed as: (a) Case 1: Conventional moment resisting frame, (b) Case 2: Frame with viscoelastic dampers providing supplemental effective damping ratio of 10%, and (c) Case 3: Frame with viscoelastic dampers providing supplemental effective damping ratio of 20%. Nonlinear time history analyses were utilized to develop seismic fragility curves whilst monitoring various performance objectives. To obtain robust estimators of the seismic reliability, a database including 15 natural earthquake ground motion records with markedly different characteristics was employed in the fragility analysis. The results indicate that depending upon the supplemental effective damping ratio, frames designed with viscoelastic dampers have considerably lower annual probability of exceedance of performance limit states for structural components, showing up to a five-fold reduction in comparison to conventionally designed moment resisting frame system.

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Multi-material core as self-centering mechanism for buildings incorporating BRBs

  • Hoveidae, Nader
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.589-599
    • /
    • 2019
  • Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be attributed to low post-yield stiffness of core member in a BRB. This paper introduces a multi-core buckling restrained brace. The multi-core term arises from the use of more than one core component with different steel materials, including high-performance steel (HPS-70W) and stainless steel (304L) with high strain hardening properties. Nonlinear dynamic time history analyses were conducted on variety of diagonally braced frames with different heights, in order to compare the seismic performance of regular and multi-core buckling restrained braced frames. The results exhibited that the proposed multi-core buckling restrained braces reduce inter-story and especially residual drift demands in BRBFs. In addition, the results of seismic fragility analysis designated that the probability of exceedance of residual drifts in multi-core buckling restrained braced frames is significantly lower in comparison to standard BRBFs.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings

  • Yesilyurt, Ali;Zulfikar, Abdullah C.;Tuzun, Cuneyt
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.627-639
    • /
    • 2021
  • Fragility curves are being more significant as a useful tool for evaluating the relationship between the earthquake intensity measure and the effects of the engineering demand parameter on the buildings. In this paper, the effect of different site conditions on the vulnerability of the structures was examined through the fragility curves taking into account different strength capacities of the precast columns. Thus, typical existing single-story precast RC industrial buildings which were built in Turkey after the year 2000 were examined. The fragility curves for the three typical existing industrial structures were derived from an analytical approach by performing non-linear dynamic analyses considering three different soil conditions. The Park and Ang damage index was used in order to determine the damage level of the members. The spectral acceleration (Sa) was used as the ground motion parameter in the fragility curves. The results indicate that the fragility curves were derived for the structures vary depending on the site conditions. The damage probability of exceedance values increased from stiff site to soft site for any Sa value. This difference increases in long period in examined buildings. In addition, earthquake demand values were calculated by considering the buildings and site conditions, and the effect of the site class on the building damage was evaluated by considering the Mean Damage Ratio parameter (MDR). Achieving fragility curves and MDR curves as a function of spectral acceleration enables a quick and practical risk assessment in existing buildings.

Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers

  • Abbas Ghasemi;Fatemeh Arkavazi;Hamzeh Shakib
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.343-358
    • /
    • 2023
  • The superelastic viscous damper (SVD) is a hybrid passive control device comprising a viscoelastic damper and shape memory alloy (SMA) cables connected in series. The SVD is an innovative damper through which a large amount of seismic energy can dissipate. The current study assessed the seismic collapse induced by steel moment-resisting frames (SMRFs) equipped with SVDs and compared them with the performance of special MRFs and buckling restrained brace frames (BRBFs). For this purpose, nonlinear dynamic and incremental dynamic analysis (IDA) were conducted in OpenSees software. Both 5- and 9-story special MRFs, BRBFs, and MRFs equipped with the SVDs were examined. The results indicated that the annual exceedance rate for maximum residual drifts of 0.2% and 0.5% for the BRBFs and MRFs with SVDs, respectively, were considerably less than for SMRFs with reduced-beam section (RBS) connections and that the seismic performances of these structures were enhanced with the use of the BRB and SVD. The probability of collapse due to residual drift in the SVD, BRB, and RBS frames in the 9-story structure was 1.45, 1.75, and 1.05 times greater than for the 5-story frame.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.

Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale

  • Sonmezer, Yetis Bulent;Bas, Selcuk;Isik, Nihat Sinan;Akbas, Sami Oguzhan
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • In order to make reliable earthquake-resistant design of civil engineering structures, one of the most important considerations in a region with high seismicity is to pay attention to the local soil condition of regions. It is aimed in the current study at specifying dynamic soil characteristics of Kirikkale city center conducting the 1-D equivalent linear and non-linear site response analyses. Due to high vulnerability and seismicity of the city center of Kirikkale surrounded by active many faults, such as the North Anatolian Fault (NAF), the city of Kirikkale is classified as highly earthquake-prone city. The first effort to determine critical site response parameter is to perform the seismic hazard analyses of the region through the earthquake record catalogues. The moment magnitude of the city center is obtained as $M_w=7.0$ according to the recorded probability of exceedance of 10% in the last 50 years. Using the data from site tests, the 1-D equivalent linear (EL) and nonlinear site response analyses (NL) are performed with respect to the shear modulus reduction and damping ratio models proposed in literature. The important engineering parameters of the amplification ratio, predominant site period, peak ground acceleration (PGA) and spectral acceleration values are predicted. Except for the periods between the period of T=0.2-1.0 s, the results from the NL are obtained to be similar to the EL results. Lower spectral acceleration values are estimated in the locations of the city where the higher amplification ratio is attained or vice-versa. Construction of high-rise buildings with modal periods higher than T=1.0 s are obtained to be suitable for the city of Kirikkale. The buildings at the city center are recommended to be assessed with street survey rapid structural evaluation methods so as to mitigate seismic damages. The obtained contour maps in this study are estimated to be effective for visually characterizing the city in terms of the considered parameters.

2-D Inundation Analysis According to Post-Spacing Density of DEMs from LiDAR Using GIS (GIS를 활용한 LiDAR 자료의 밀도에 따른 2차원 침수해석)

  • Ha, Chang-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.74-88
    • /
    • 2010
  • In this study, the points of LiDAR were modified in order to generate various DEM resolutions by applying LiDAR data in Ulsan. Since the LiDAR data have points with 1m intervals, the number of points for each resolution was modified to the size of 1, 5, 10, 30, 50, 100m by uniformly eliminating the points. A runoff analysis was performed on Taehwa river and its tributary, Dongcheon, with 200 year rainfall exceedance probability. 2-dimensional inundation analysis was performed based on the density of LiDAR data using FLUMEN, which was used to establish domestic flood risk map. Once DEM data obtained from LiDAR survey are used, it is expected that the study results can be used as data in determining optimal grid spacing, which is economical, effective and accurate in establishing flood defence plans including the creation of flood risk map.

Probabilistic Analysis on Dynamic Response of Steel Box Girder Bridge by Actual Passing Trains (실 통행열차에 의한 강박스거더 교량의 동적응답에 대한 확률론적 분석)

  • Hwang, Eui Seung;Kim, Do Young;Yeo, Inho
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • For railway bridges, serviceabilities such as passenger comfort and train riding safety are important design requirements as well as the structural safety of the bridge. In this paper, dynamic responses of a steel box girder bridge by actual passing trains were measured and analyzed by probabilistic method. Deflections and accelerations data at center of side span were collected for about a month by various types of actual passenger and freight trains. Effects by axle weights, types of trains were analyzed. 100 and 200 years maximum values were estimated by Gumbel probability paper and compared with corresponding requirements in the current design code. Except for some cases of accelerations, estimated values were well below the criteria and exceedance probabilities were very low. More data for longer term and other types of bridges are needed to perform comprehensive analysis on the serviceability of railway bridges.