• 제목/요약/키워드: exceedance point process

검색결과 2건 처리시간 0.013초

The Likelihood for a Two-Dimensional Poisson Exceedance Point Process Model

  • Yun, Seok-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • 제15권5호
    • /
    • pp.793-798
    • /
    • 2008
  • Extreme value inference deals with fitting the generalized extreme value distribution model and the generalized Pareto distribution model, which are recently combined to give a single model, namely a two-dimensional non-homogeneous Poisson exceedance point process model. In this paper, we extend the two-dimensional non-homogeneous Poisson process model to include non-stationary effect or dependence on covariates and then derive the likelihood for the extended model.

원/달러 환율 투자 손실률에 대한 극단분위수 추정 (Extreme Quantile Estimation of Losses in KRW/USD Exchange Rate)

  • 윤석훈
    • Communications for Statistical Applications and Methods
    • /
    • 제16권5호
    • /
    • pp.803-812
    • /
    • 2009
  • 금융자료에 극단값이론을 적용하는 것은 위험관리에서 중요한 최신 통계기법 중의 하나라고 할 수 있다. 극단값분석에서 전통적으로 사용해 오던 연간 최대값방법은 시계열자료의 연간 최대값들에 대하여 일반화 극단값분포를 적합시키는 것이고, 최근 대안으로 널리 사용되고 있는 분계점 방법은 시계열자료 중 충분히 큰 하나의 분계점을 넘어서는 초과값들에 대하여 일반화파레토분포를 적합시키는 것이다. 그러나, 보다 실질적인 방법은 분계점을 넘어서는 초과값들을 하나의 점과정으로 해석하는 것인데, 즉 초과값들의 초과시점과 초과여분을 점근적으로 비동질 포아송과정을 갖는 하나의 2차원 점과정으로 간주하는 것이다. 본 논문에서는 이러한 2차원 비동질 포아송과정 모형을 1982.1.4부터 2008.12.31까지 수집된 원/달러 환율 시계열자료로부터 계산된 일별 환율투자손실률, 즉 일별 로그 손실률에 적용한다. 여기서 주된 관심은 10년 혹은 50년에 한번 정도 발생하는 대형 손실률 수준과 같은 극단분위수를 어떻게 추정하느냐 하는 것이다.