• Title/Summary/Keyword: excavation method

Search Result 1,058, Processing Time 0.025 seconds

3-D Resistivity Imaing of a Large Scale Tumulus (대형 고분에서의 3차원 전기비저항 탐사)

  • Oh, Hyun-Dok;Yi, Myeong-Jong;Kim, Jung-Ho;Shin, Jong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.316-323
    • /
    • 2011
  • To test the applicability of resistivity survey methods for the archaeological prospection of a large-scale tumulus, a three-dimensional resistivity survey was conducted at the $3^{rd}$ tumulus at Bokam-ri, in Naju city, South Korea. Since accurate topographic relief of the tumulus and electrode locations are required to obtain a high resolution image of the subsurface, electrodes were installed after making grids by threads, which is commonly used in the archaeological investigation. In the data acquisition, data were measured using a 2 m electrode spacing with the line spacing of 1 m and each survey line was shifted 1 m to form an effective grid of 1 m ${\times}$ 1 m. Though the 3-D inversion of data, we could obtain the 3-D image of the tumulus, where we could identify the brilliant signature of buried tombs made of stones. The results were compared with the previous excavation results and we could convince that a 3-D resistivity imaging method is very useful to investigate a large-scale tumulus.

An Experimental Study on Recharge Well Technology for Prevention of Ground Collapse (지반함몰 방지를 위한 지하수 재주입 실험적 연구)

  • Shin, Eunchul;Park, Chunsung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.35-43
    • /
    • 2017
  • It is a method of suppressing back ground subsidence by re-injecting groundwater back to the target ground and recovering the underground water level. In order to analyze the subsidence of the back ground due to maintaining the underground water level, indoor model experiments were conducted. Through this study, the factors influencing on the groundwater and the tendency of subsidence back ground by experiments were analyzed and the effect of ground subsidence by reinfusion of groundwater was also investigated. As a result of the subsidence analysis with considering only the influence of the underground water level, the settlement of the ground occurs as the underground water level at the time of ground excavation goes down. The closer to the back of the retaining wall, the maximum settlement occurred. Moreover, it was analyzed that the influence distance where subsidence occurs from retaining wall to the point of about 1.8 H on the basis of the ground collapse. The most effective location of water reinjection is the closet location to the back of braced-cut wall for reducing the groundwater down and also minimizing the ground settlement.

A Study of Rockbursts Within a Deep Mountain TBM Tunnel (산악 TBM 터널에서 발생한 암반파열 현상에 대한 연구)

  • Lee, Seong-Min;Park, Boo-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • Rockbursts are mainly caused by a sudden release or the stored strain energy in the rock mass. They have been the major hazard in deep hard rock mines but rarely occur in tunnels. Due to the short history and limited information on rockbursts, the topic has rarely been studied in Korea. Some cases of rockbursts, however, have been reported during construction of a mountain tunnel for waterway. This study focuses on analyzing data on rockbursts obtained from a TBM (Tunnel Boring Machine) tunnel and suggests methods for a comprehensive understanding on rockbursts. From the analysis of the field data of rockbursts, it was found that most rockbursts mainly occurred at the section between the tunnel face and the TBM operating room, and the rock bursting phenomena lasted up to 20 days after excavation in certain areas. The data also show that the bursting spots are located all around the tunnel surface including the face, the wall, and the roof, The maximum size of bursting spots is usually less than 100cm. This study also suggests new scale systems of brittleness and uniaxial compressive strength to evaluate the possible tendency for a rockburst. These systems are scaled based on the scale system of strain energy density. In addition, with these scale systems, this research shows that there are potentially higher tendencies for rockbursts in this specific tunnel. Moreover this research suggests that properties of rock and rock mass, RMR (Rock Mass Rating) value, tunneling method, excavating speed, and depth of tunnel have a strong correlation with rockbursts.

A numerical study on the analysis of behavior characteristics of inclined tunnel considering the optimum direction of steel rib (강지보재 최적 설치방향을 고려한 경사터널의 거동특성에 대한 수치해석적 연구)

  • Park, Sang-Chan;Kim, Sung-Soo;Shin, Young-Wan;Shin, Hyu-Soung;Kim, Young-Geun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2008
  • The steel rib, one of the main support of tunnel, plays a very important role to stabilize tunnel excavation surface until shotcrete or rockbolt starts to perform a supporting function. In general, a steel rib at the horizontal funnel is being installed in the direction of gravity which is known favorable in terms of constructability and stability. However, as the direction of principal stress at the inclined tunnel wall is different from that of gravity, the optimum direction of steel rib could be different from that at the horizontal tunnel. In this study, a numerical method was used to analyze the direction of force that would develope displacement at the inclined tunnel surface, and that direction could be the optimum direction of steel rib. The support efficiency of steel rib could be maximized when the steel rib was installed to resist the displacement of the tunnel. Three directions which were recommended for the inclined tunnels in the Korea Tunnel Design Standard were used for the numerical models of steel rib direction. In conclusion, the results show that all displacement angle of the models are almost perpendicular to the tunnel surface regardless of face angle. So if the steel rib would be installed perpendicular to the inclined tunnel surface, the support efficiency of steel rib could be maximized.

  • PDF

Numerical Study on Vertical Stress Estimation for Panel Pillars at Room and Pillar Mines (주방식 광산의 패널 광주 수직응력 추정을 위한 수치해석 연구)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.30 no.5
    • /
    • pp.473-483
    • /
    • 2020
  • This paper examines the vertical stress change concentrated on mine pillar which occurs due to the stress disturbance from opening excavation at room and pillar mine by FLAC3D, a finite difference method (FDM) software. The mesh size combination is decided with a careful consideration of relative error and run-time, then its performance is verified. A series of numerical analyses is conducted and the vertical stress at central pillar was observed for the test cases of 1×1 to 11×11 mine pillars, 40 m to 320 m depth with 40 m difference. The results show that the vertical stress of pillar approaches to the similar value with the value estimated by tributary area theory(TAT) when the development area (NP) is increased or the height of overburden (HOB) is decreased, while it is overestimated in the opposite case. Furthermore, it also represents that the vertical stress factor (VSF) converges to a specific value when the depth is increased whille keeping the development area identical.

The Change in the Buddhist Architecture of the Unified Silla Period (668-935) (통일신라시대(統一新羅時代) 불교건축(佛敎建築)의 변화(變化))

  • Kim, Sung-Woo
    • Journal of architectural history
    • /
    • v.1 no.2 s.2
    • /
    • pp.68-84
    • /
    • 1992
  • The development of Buddhist architectures of the Unified Silla period have been generally understood to have paired pagoda instead of one which had been popular until before the unification. Besides the stylistic categorization of paired pagoda system, there had been no further investigation reported concerning whether there was any detailed process of change within the development of paired pagoda style. This paper aims to identify such change inside the development of paired pagoda style, which, externally, seems to be the same pattern of site design maintained throughout the period of Unified Silla that lasted for about three centuries. Since the temple sites of study are in the same pattern of layout, the method of investigation has to be such that can identify the subtle changes that, in external appearance, are not easily discernible. Hence, this research compared the dimensions of important measurement of five temple sites to be able to clarify the process of minor changes. Among many sites of Silla temples, only five were suitable for the research since detailed measurement were possible through field research or the report of excavation. They are the sites of Sachonwang-sa, Mangduk-sa, site of Kunsuri, and Bulguk-sa. Although the five sites have the same style of paired pagoda, it is clear that there were consistant flow of change. Even though the motivation of such change were not strong enough to change the site pattern itself, it resulted continuous minor changes such as the size and location of architectures. The size of image hall, for example, was growing larger and larger as time goes on, while, the size of Pagoda was getting smaller. In the same way, the size of middle gate became smaller while the size of lecture hall became larger, although the rate of change in these cases were not as severe as that of image hall and pagoda. At the same time, pagoda was coming closer to the middle gate leaving larger space in front of the image hall. Such aspect is even more meaningful considering the fact that the pagoda, from the 8th century in Japan and China, moved outside of the major precinct. The image hall, too, moved toward the middle gate slightly so that the space in front of the lecture hall became more spacious. Such changes, of course, were not accidental but they are the same continuous motivation of change that caused the changes before the period of unification. Enlargement of image hall and reduction of pagoda, for example, represent the changing relative importance of religious meaning. Hence, it is evident that one can not easily imterprete the development of one style only by categorizing it to be one same style. In the veiwpoint of the underlying motivation of change, the fact that one style persisted for a certain period of time, does not mean there had been no change, but means that it was the time of motivational accumulation, causing minor changes within the same style, to be able to create major change coming after.

  • PDF

TBM risk management system considering predicted ground condition ahead of tunnel face: methodology development and application (막장전방 예측기법에 근거한 TBM 터널의 리스크 관리 시스템 개발 및 현장적용)

  • Chung, Heeyoung;Park, Jeongjun;Lee, Kang-Hyun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • When utilizing a Tunnel Boring Machine (TBM) for tunnelling work, unexpected ground conditions can be encountered that are not predicted in the design stage. These include fractured zones or mixed ground conditions that are likely to reduce the stability of TBM excavation, and result in considerable economic losses such as construction delays or increases in costs. Minimizing these potential risks during tunnel construction is therefore a crucial issue in any mechanized tunneling project. This paper proposed the potential risk events that may occur due to risky ground conditions. A resistivity survey is utilized to predict the risky ground conditions ahead of the tunnel face during construction. The potential risk events are then evaluated based on their occurrence probability and impact. A TBM risk management system that can suggest proper solution methods (measures) for potential risk events is also developed. Multi-Criterion Decision Making (MCDM) is utilized to determine the optimal solution method (optimal measure) to handle risk events. Lastly, an actual construction site, at which there was a risk event during Earth Pressure-Balance (EPB) Shield TBM construction, is analyzed to verify the efficacy of the proposed system.

Earthquake-Resistant Design of Cantilever Retaining-Walls with Sloped Base (기초슬래브의 밑면이 경사진 캔티레바식 옹벽의 내진설계)

  • Kim, Hong Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.87-98
    • /
    • 1990
  • The present Study dealt with the earthquake-resistant design of cantilever retaining walls supporting cohesionless soils. With design examples of three different types of cantilever retaining walls, the factors of safety against sliding were computed at various values of horizontal acceleration coefficient and compared with each other. The horizontal inertia effect due to the weights of concrete wall itself and a portion of backfill was taken into account in the analyses, and also Mononobe-Okabe pseudo-static solution method was modified to deal with various states different from limiting equilibrium state. From the analyses of safety against sliding, it was found that a cantilever retaining wall with sloped base was the most efficient type in earthquake resistant design. It was also found that by sloping the base, the width of the base slab could be reduced, resulting in the least volume of concrete, excavation and backfill as compared to the other types of walls. In the case of a cantilever retaining wall with sloped feel, the efficiency similar to that of a wall with sloped base could be expected under static loading as well as at relatively low level of earthquake loading. However, this efficiency became vanished with the increase of horizontal acceleration coefficient, since the rate of reduction in developed earth pressures on the heel became smaller. In addition, the design charts with different soil friction angles as well as with different earthquake resistant design criteria of safety factor against sliding were presented for the design of cantilever retaining walls sith sloped base.

  • PDF

Development of a Fleet Management System for Cooperation Among Construction Equipment (건설장비 협업을 위한 플릿관리 시스템 개발)

  • Ahn, Seo-Hyun;Kim, Sung-Keun;Lee, Kwan-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.573-586
    • /
    • 2016
  • In construction jobs, a combination of various kinds of machinery is used to perform earthworks at a large-scale site. Individual equipments essentially cooperate with each other on task such as excavation, load, transfer and compaction. While other area have studied cooperation system, related study in domestic construction is in poor condition. In this study, construction equipment fleet management system is developed for solving this problem and find way to improving efficiency in earthworks site. The entire concept of the fleet management system, including its components and process, has been systematically outlined in this paper. An operational methodology has also been suggested, where a number of machines, such as the excavators, trucks and compactors, are chosen and further grouped into a cluster. A case study verify fleet management system's effectiveness on performing task package by comparing existing work method with methodology in this study. Fleet management system in this study is expected to curtail fuel consumption by the reduction of working time and moving distance. Furthermore, it can be anticipated to declining carbon emission effect.

Mechanical Behavior of Tunnel Portal in Horizontal Arch Slope (수평 아치형 터널 갱구부 비탈면의 역학적 거동)

  • Yang, Mun-Sang;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.50-61
    • /
    • 2000
  • The ground around the portal of a tunnel is the most typical part showing the 3-dimensional mechanical behavior in the tunnel. The portal slope is constructed at the weathered soft rock-mass, and remains as a potential sliding mass. The slope failure around the tunnel portal may happen drastically and induce the great disaster; hence, for the permanent stability several special techniques are required. To solve this problem, the ground around the tunnel portal may be excavated in the arch shape to develop the arching effect in horizontal direction. With the arch-type portal slope, one can reduce considerably the excavation mass and the damage of environments. This approach has not been attempted yet due to the lack of understanding and the well-defined analyzing method, so the retaining wall type portal is more universal. The 3-dimensional finite element analyses were carried out to prove that the arch type is more advantageous in safety and cost than the right angle type. The influence of the tunnel construction sequence and the strength of the rock-mass on the slope stability was investigated by focusing on the maximum shear strain in the slope, and the yield zone at the tunnel face.

  • PDF