• Title/Summary/Keyword: excavation method

Search Result 1,058, Processing Time 0.025 seconds

A Case Study on Elephant Foot Method for Railway Tunneling in Large Fault Zone (대규모 단층대구간에서의 철도터널 우각부 보강공법 적용성 연구)

  • Lee, Gilyong;Oh, Jeongho;Cho, Kyehwan;Lee, Doosoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1161-1167
    • /
    • 2016
  • In this study, an attempt was made to conduct a case study on the development of ground expansive displacement due to lack of bearing capacity of original ground in spite of applying reinforcement treatments that intended to enhance the stability of big size high-speed rail tunnel in large fault zone. For the purpose of this, in-situ measurements made in the middle of excavation stage were analyzed in order to characterize ground responses and numerical analysis was performed to evaluate the effectiveness of reinforcement technique such as elephant foot method applied for this site via comparing with field monitoring measurements. In addition, further numerical studies were carried out to investigate the influence of leg pile installation angle and length, which is one of types of elephant foot method. The results revealed that the optimum condition for the leg pile installation is to maintain 45 degree of installation angle along with 6 meter of embedment depth.

Case study on design and construction for cross-connection tunnel using large steel pipe thrust method in soil twin shield tunnels underneath airport (공항하부 토사 병설 쉴드터널에서 대구경 강관추진에 의한 횡갱 설계/시공사례 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.325-337
    • /
    • 2021
  • On the road and rail tunnels, the evacuation pathway and facilities such as smoke-control and fire suppression system are essential in tunnel fire. In the long twin tunnels, the cross-connection tunnel is usually designed to evacuate from the tunnel where the fire broke out to the other tunnel. In twin shield tunnels, the segment lining has to be demolished to construct the cross-connection tunnel. Considering the modern shield TBM is mostly the closed chamber type, the exposure of underground soil induced by removal of steel segment lining is the most danger construction step in the shield tunnel construction. This case study introduces the excavation method using the thrust of large steel pipe and reviews the measured data after the construction. The large steel pipe thrust method for the cross-connection tunnel can stabilize the excavated face with the two mechanisms. Firstly, the soil in front of excavated face is cylindrically pre-supported by the large steel pipe. Secondly, the excavated face is supported by the plugging effect caused by the soil pressed into the steel pipe. It was reviewed that the large steel pipe thrust method in the cross-connection tunnel is enough to secure the construct ability and stability in soil from the measurement results about the deformation and stress of steel pipe.

Evaluation of the Standard Support Pattern in Large Section Tunnel by Numerical Analysis and Field Measurement (수치해석 및 현장계측에 의한 대단면 터널 표준지보패턴의 적정성 검증)

  • Byun, Yoseph;Chung, Sungrae;Song, Simyung;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.5-12
    • /
    • 2011
  • When choosing the support pattern of tunnel, the characteristics of rock are identified from the result of the surface geologic survey, boring, and geophysical prospecting and laboratory test. And a rock mass rating is classified and excavation method and standard support pattern are designed considering rock classification, domestic and international construction practices, numerical analysis. According to the revised design standard for tunnel, it was recommended to classify the rock mass rating for the design of tunnel into a rating based on RMR. If necessary, it proposed a flexible standard allowed applying more atomized the rock mass rating and Q-System. Also, the resonable verification of the support pattern must be accompanied because the factors affecting the structure and behavior of ground during the construction of tunnel are the main factors of uncertainty factors such as the nature of ground, ground water and the characteristics of structural materials. These days, such verification method is getting more specialized and diversified. In this study, the empirical method, numerical analysis and comparative analysis of in situ measurements were used to prove the reasonableness in the support pattern by RMR and Q-value on the Imha Dam emergency spillway.

Evaluation of the Lateral Influence Range on Temporary Structures for a Train Operating at 80km/h (시속 80km/h의 열차 운행시 가시설 구조물에 미치는 수평영향범위 평가)

  • Jong-Chul Kim;Yeong-Bae Kim;Tae-Hyun Hwang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • In accordance with the urban development project, cases of constructing temporary wall structures for ground excavation in the vicinity of railway structures are increasing. In addition, the complaints about train vibration are also increasing from people living in large buildings newly built after installing the temporary wall structures. In order to solve this problem, a method for reducing train vibration is considered from the design stage of the building, and a vibration reduction system is installed on the structure when the building is newly constructed. However, the vibration reduction method established at the structure design stage can be determined through the results of field measurements or dynamic numerical analysis for a specific area, and there is a limit to evaluating whether the established vibration reduction method is appropriate due to the lack of objective research data. Therefore, in order to provide objective basic data when establishing a vibration reduction method, this study performed the dynamic numerical analysis for a operating train with a speed 80km/h by applying differently the depths of railway structures, the distances between railways and temporary wall structures, and ground conditions. It was found that the range of influence of a train operating at 80 km/h was within 4.5D of the lateral distance from the railway structure in the case of the condition where the temporary wall was installed.

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

The Efficient Berms for Restraining Excessive Deformation Caused by Deep Excavations in Urban Area (도심지 버팀 굴착시 과도 변헝 억제를 위한 효율적 소단)

  • 양구승;박기태
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.43-56
    • /
    • 1999
  • The use of berms can be an effective method to restrain excessive movements of wall and ground caused by deep excavations in urban area. But generally in construction sites, no berm remains for the sake of construction convenience or the geometry and magnitude of remaining berm is determined by individual experiences due to scarce research results. In this research, laboratory model tests and numerical analyses are used mainly for sandy soils. And efficient berms for restraining excessive movements by deep excavations are analyzed. Model tests were performed for the cases of cantilever and braced wall excavations, and the behaviors of retaining wall were analyzed according to the geometry and magnitude of berms. And also, numerical methods were used for analyzing efficient berms which are available in the soil and construction conditions in urban areas of Korea.

  • PDF

The conservation of the ancient ships salvaged in North Europe-Especially on the Conservation of the Viking ships - Especially on the Conservation of the Viking ships in Denmark (북유럽 인양목선의 보존처리-덴마아크 Viking선을 중심으로)

  • Bae, Byong-Whan
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.278-291
    • /
    • 1986
  • In this report the practical case of Viking ship's conservation in Denmarke specially among the Eurpoean nations is introduced. The contents of it are summarized as follows :From 1957 to 1962 the Danish National Museum Salvaged five Viking ships from the bottom of Roskilde Fjord, Which were composed of the pieces of timber whose surface was soft because they had lain on the sea bed for about a thousand years. Excavation had been carried out in the same way as in the field by driving down a sheet piling around the wrecks and pumping the water out. These pieces of the wreck ships were packed in airtight plastic bags one by one to be transported for Brede and then immidiately had to go through the treatment for conservation. The conservation treatment process for the pieces includes three steps ; the preliminary process prior to the hardening treatment, the hardening and the assemble of the ships. In the first step ; the preliminary process, all remains of mud and shells from the fjord bed are washed off, and measuring followed ; every single piece of wreckage was drawn so that the form and size of the piece, nail holes, and breaks were registered before conservation. In the second ; the hardening treatment step, the pieces of the woreckage were filled with P.E.G. This Polyethylene Glycol method was the best to handle in the subsequent mounting of the ships in the museum. In the final, the Glycol-treated pieces were pieced together to spips with support of a system of reinforcements. They were to fit in place after corrections of the form were made several times.

  • PDF

Prediction of Rock Mass Strength Ahead of Tunnel Face Using Hydraulic Drilling Data (천공데이터를 이용한 터널 굴진면 전방 암반강도 예측)

  • Kim, Kwang-Yeom;Kim, Sung-Kwon;Kim, Chang-Yong;Kim, Kwang-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.479-489
    • /
    • 2009
  • Appropriate investigation of ground condition near excavation face in tunnelling is an inevitable process for safe and economical construction. In this study mechanical parameters from drilling process for blasting were investigated for the purpose of predicting the ground condition, especially rock mass strength, ahead of tunnel face. Rock mass strength is one of the most important factors for classification of rock mass and making a decision of support type in underground construction. Several rock specimens which are considered homogeneous and having different strength values respectively were tested by hydraulic drill machines generally used. As a result, penetration rate is fairly related with rock mass strength among drilling parameters. It is also found that penetration rate increases along with the higher impact pressure even under same rock strength condition. It is finally suggested that new prediction method for rock mass strength using percussive pressure and penetration rate during drilling work can be utilized well in construction site.

Application of resistivity monitoring with tunnel excavation area (터널 굴착에 따른 전기비저항 모니터링 기술 적용)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Kim, Jung-Ho;Rae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.405-420
    • /
    • 2008
  • Resistivity survey is one of the widely used methods for the investigation of stability of the ground or bedrock around tunnel and is also used as an essential base data for stability and reduction of construction cost through first-hand approximation of rock quality at design step. Generally, the analysis of resistivity survey data is performed by single measurement. When distribution variation of groundwater around a tunnel over time is necessary for maintenance of a tunnel, resistivity monitoring is very useful survey method to grasp distribution variation of groundwater. So we performed the grid line resistivity survey to monitoring resistivity variation for six times. And we also tried to evaluate application possibility of the resistivity monitoring for construction safety through providing detailed information on fault zones.

  • PDF