• Title/Summary/Keyword: excavation method

Search Result 1,058, Processing Time 0.021 seconds

Numerical Analysis for the Assessment of Building Damage in Urban Excavation (지반굴착시 인접구조물의 손상 영향 평가에 대한 수치해석)

  • 이민근;황의석;김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.561-568
    • /
    • 2003
  • The protection of adjacent structures in urban excavation has been an important issue. But the research on the interaction between ground movements and adjacent structure has been scarce, therefore this study was necessitated. Current design practice for the prediction of excavation-induced ground movements heavily rely on empirical method. In this study, damage levels of brick building are examined closely by means of angular distortion, deflection ratio, horizontal strain. The results of numerical analysis indicated that the movement of actual building was 60∼65% of the ground movement, while angular distortion was 45∼65%. Also numerical analysis for the assessment of brick building can be applied to the building protection at various construction stages.

  • PDF

A Study on the Evaluation of Necessity for the Support in Case of Excavartion of the Transport Drift at Danyang Site (단양지역의 운방갱도 굴착시 갱도 지보의 필요성 판정에 관한 연구)

  • 이종욱;조만섭;김일중;김영석
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.54-62
    • /
    • 1993
  • In order to evaluate the necessity for the support during the excavation of the transport drift and use the data for design applications, laboratory testings of mechanical properties of rock samples and engineering rock mass classifications on this study site were performed. The values of RMR and Q-system are 68 and 11.8, respectively. Since these results were evaluated as good, this rock mass were determined to be unsupported. Full face excavation method was determined to be suitable for excavating this drift. In case of excavation, smooth blasting techniques must be carried out at the wall rock and the crown. However, considering the blast vibration etc. that have an effect on the surrounding rock mass, approximately less than 9kg of explosive charges per blast should be maintained.

  • PDF

Three Dimensional Behaviour of the Rock Mass around a Large Rock Cavern during Excavation (지하 대공동의 3차원 굴착거동에 관한 연구)

  • 이영남;서영호;주광수
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • This paper presents the results of deformation measurement and numerical analysis carried out to study the behaviour of the rock mass around large underground oil storage caverns. Displacements during excavation have been monitored using borehole extensometers which had been installed before the excavation of caverns proceeded. Numerical analysis has been carried out to examine the three-dimensional behaviour of rock and the face advance effect. The input parameters for this analysis were determined from the results of laboratory and field tests. The deformation modulus of the rock mass was determined from plate loading test at the site and in-situ stresses were measured from the overcoring method with USBM deformation gauge. The results from this study gave a clear picture for three-dimensional behaviour of the rock mass, hence would be used for the optimum design.

  • PDF

Reliability approach to groundwater flow analysis in underground excavation (지하굴착지반에서의 지하수 흐름에 관한 신뢰성 해석)

  • Jang, Yeon-Soo;Kim, Hong-Seong;Park, Jeong-Wong;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.344-351
    • /
    • 2005
  • In this paper, a reliability-groundwater flow program is developed by coupling the 2-D finite element numerical groundwater flow program with first and second order reliability program. From the parametric study of hydraulic conductivity of soil layers, the increase of both mean and variance of hydraulic conductivity results in the increase of probability of exceeding the threshold hydraulic head. The probability of failure was more sensitive to parameters of weathered granitic soil and rock located at the middle and bottom of the excavation than those at the other locations. It can be recommended from this study that the reliability method, which can include the uncertainty of soil parameters, should be performed together with the deterministic analysis to compensate the weakness of the latter analysis for the groundwater flow problem of underground excavations.

  • PDF

Stability and Earth Pressure Distribution of Excavated Earth Retaining Wall by Centrifugal Model Tests (원심모형실험에 의한 굴착 흙막이벽의 안정 및 토압분포)

  • Kim, Y.C.;Lee, C.K.;Kim, H.J.;Ahn, K.K.;Lee, M.W.;Heo, Y.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 1997
  • In this study, centrifugal model tests were performed to investigate the behavior of excavated earth retaining wall with the depth of excavation and different types of wall(aluminum, steel panel). Jumunjin standard sand was used for foundation soil. The raining method was adopted to form the required relative density of the model ground. The lateral earth pressure measured from tests were compared with estimated active earth pressure by Rankine's theory. The test results have shown that the earth pressure acting on the retaining wall and the rotation displacement of the wall are influenced by the depth of excavation and the type of wall. It was found from the test results that the deformation of the wall increases with the depth of excavation.

  • PDF

Case Study of Ground and Supporting System Failure in Soft Ground Deep Excavation (연약지반 깊은 굴착에서 지보재 및 지반 파괴 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.537-544
    • /
    • 2005
  • We find out many soft ground deep excavation cases where results of careless overexcavation accelerate the advance of loosening zone of adjacent ground, bucklings of struts and bottom heaves happen due to delayed supporting time. This article introduces a soft ground deep excavation case where steel pipe sheet piles were used with struts as an earth retaining system. There were 2 times of buckling in the supporting system and heaving of bottom ground due to overexcavation and insufficient penetration depth of the steel pipe sheet piles. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Evaluation of Groundwater Flow on Railroad Tunnel Excavation (철도 터널 공사시 지하수 발생량 산정에 관한 연구)

  • Oa Seong-Wook;Ahn Tae-Bong;Choi Seung-Seon
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.448-453
    • /
    • 2005
  • Tunnel excavation is an inevitable process for railroad construction in Korea and it being a one of the major issues of its environmental impact assessment. Ground water flow by tunnel excavation is an important parameter to determine environmental effects. The current method to determine the ground water flow is used a unit number induced a highway construction site. But it does not consider any site characteristics; ground water level, soil properties and others. The purpose of this study is to suggest the determination way of ground water flow considering site characteristics in tunnel construction.

  • PDF

A Field Case Research by Construction Management of Underground Excavation Construction Using Inverse Analysis Method (역해석 기법을 이용한 지하굴착공사의 시공관리에 관한 현장사례연구)

  • Park, Hyun-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1089-1095
    • /
    • 2014
  • In this study, we compared and analyzed the displacement of final excavation with measured value through an inverse analysis method used in urban excavation construction. We maximized the effectiveness of the inverse analysis method, and plan to achieve cost-effective and practical construction management in the field with identical conditions. As the first stage, we suggest an example of a field which has the inverse analysis method. We applied the inverse analysis method to three different fields on which construction and measuring were finished. Of these three fields, two fields showed a very satisfactory result. However, in one field, there were significant differences between the analysis and measured value. The result of our analysis indicated that, we should unite the conditions of the inverse analysis method and field construction. We need to thoughtfully reconsider the RANKINE earth pressure application in a triangle type. This is because the uniformity of earth pressure is made by its arching effect, in the condition of the displacement of lower underground occurring widely, which is differentiated with the earth pressure conditions of RANKINE, even if the slurry wall has stiffness. Also, when recalculating the soil parameter, we should emphasize the adhesion of the weathering zone, and give experimental consideration to ground water level.

On Estimating Pit-Excavation Volume using Spline Surfaces without Boundary Conditions (경계조건이 없는 스플라인 곡면을 이용한 토공량 결정에 관한 연구)

  • Yoo, Jae-Chil;Mun, Du-Yeoul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.5-12
    • /
    • 2010
  • It is very important to get the accurate calculation of pit-excavation volume in many civil engineering projects. There have been common drawbacks to earlier methods of ground profiling, such dealing with sharp corners or the grid points any two straight lines. There are several papers of using spline surfaces to obtain more accurate calculations of the earthwork. In this paper, we propose an algorithm of finding a spline surface without boundary conditions which interpolates the given data and an appropriate method to calculate the earthwork. We present some computational results showing that our proposed method provides good accuracy.

A Path Planning for Autonomous Excavation Based on Energy Function Minimization (에너지 함수 최적화를 통한 무인 굴삭 계획)

  • Park, Hyong-Ju;Bae, Jang-Ho;Hong, Dae-Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.76-83
    • /
    • 2010
  • There have been many studies regarding development of autonomous excavation system which is helpful in construction sites where repetitive jobs are necessary. Unfortunately, bucket trajectory planning was excluded from the previous studies. Since, the best use of excavator is to dig efficiently; purpose of this research was set to determine an optimized bucket trajectory in order to get best digging performance. Among infinite ways of digging any given path, criterion for either optimal or efficient bucket moves is required to be established. One method is to adopt work know-how from experienced excavator operator; However the work pattern varies from every worker to worker and it is hard to be analyzed. Thus, other than the work pattern taken from experienced operator, we developed an efficiency model to solve this problem. This paper presents a method to derive a bucket trajectory from optimization theory with empirical CLUB soil model. Path is greatly influenced by physical constraints such as geometry, excavator dimension and excavator workspace. By minimizing a energy function under these constraints, an optimal bucket trajectory could be obtained.