• 제목/요약/키워드: exact shear strain shape function

검색결과 2건 처리시간 0.015초

Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam

  • Heydari, Abbas
    • Steel and Composite Structures
    • /
    • 제28권5호
    • /
    • pp.589-606
    • /
    • 2018
  • The previous studies reflected the significant effect of neutral-axis position and coupling of in-plane and out-of-plane displacements on behavior of functionally graded (FG) nanobeams. In thin FG beam, this coupling can be eliminated by a proper choice of the reference axis. In shear deformable FG nanobeam, not only this coupling can't be eliminated but also the position of neutral-axis is dependent on through-thickness distribution of shear strain. For the first time, in this paper it is avoided to guess a shear strain shape function and the exact shape function and consequently the exact position of neutral axis for arbitrary gradation of higher order nanobeam are obtained. This paper presents new methodology based on differential transform and collocation methods to solve coupled partial differential equations of motion without any simplifications. Using exact position of neutral axis and higher order beam kinematics as well as satisfying equilibrium equations and traction-free conditions without shear correction factor requirement yields to better results in comparison to the previously published results in literature. The classical rule of mixture and Mori-Tanaka homogenization scheme are considered. The Eringen's nonlocal continuum theory is applied to capture the small scale effects. For the first time, the dependency of exact position of neutral axis on length to thickness ratio is investigated. The effects of small scale, length to thickness ratio, Poisson's ratio, inhomogeneity of materials and various end conditions on vibration and buckling of local and nonlocal FG beams are investigated. Moreover, the effect of axial load on natural frequencies of the first modes is examined. After degeneration of the governing equations, the exact new formulas for homogeneous nanobeams are computed.

A Finite Thin Circular Beam Element for In-Plane Vibration Analysis of Curved Beams

  • Kim Chang-Boo;Park Jung-Woo;Kim Sehee;Cho Chongdu
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2187-2196
    • /
    • 2005
  • In this paper, the stiffness and the mass matrices for the in-plane motion of a thin circular beam element are derived respectively from the strain energy and the kinetic energy by using the natural shape functions of the exact in-plane displacements which are obtained from an integration of the differential equations of a thin circular beam element in static equilibrium. The matrices are formulated in the local polar coordinate system and in the global Cartesian coordinate system with the effects of shear deformation and rotary inertia. Some numerical examples are performed to verify the element formulation and its analysis capability. The comparison of the FEM results with the theoretical ones shows that the element can describe quite efficiently and accurately the in-plane motion of thin circular beams. The stiffness and the mass matrices with respect to the coefficient vector of shape functions are presented in appendix to be utilized directly in applications without any numerical integration for their formulation.