• Title/Summary/Keyword: exact moments

검색결과 62건 처리시간 0.018초

Steepest Descent Method를 이용한 정전계 문제의 해석 (On the Analysis of Electrostatic Problems Using a Steepest Descent Method)

  • 안지용;정구철;김정기
    • 한국통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.396-401
    • /
    • 1986
  • Steepest Descent Method를 정전계 문제의 해석에 적용하였다. 반복법과 moment method와 같은 direct method와의 차이점을 기술하였다. 반복법을 이용하여 정확한 해에 단조적으로 수렴하며 대형 system의 해석에 적합함을 보였다. 정전계 문제에 대해서 해석한 수치결과를 제시하였으며 moment solution과 잘 일치하고 있음을 보였다.

  • PDF

피로 해석을 고려한 점용접부 모델링 기법의 성능 평가 (Performance Evaluation for the Methods of Spot Weld Modeling Considering Durability)

  • 변형배;이병채;주병현
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1153-1160
    • /
    • 2005
  • Many methods of spot weld modeling have been developed to increase efficiency and guarantee the robustness fer the CAE analysis. In this research they are introduced and the performance is compared in a viewpoint of stiffness and durability. For evaluating the performance a multi-spot welded specimen as well as two single welded specimen is used. The results show that the CWELD element considering 'patch to patch' is stiffer than other modeling methods in stiffness and more conservative in durability. It also offers simple modeling and since it is much easier to maintain the orrhogonality of the BAR element expressing a nugget, we can obtain more exact reaction forces and moments in a nugget. Therefore the CWELD element is the most excellent in the assessment of durability.

Motion estimation using regions

  • Sull, Sanghoon
    • 한국통신학회논문지
    • /
    • 제23권9A호
    • /
    • pp.2333-2344
    • /
    • 1998
  • We present a two step approach for estimating the motionand sturcture parameters from region orrespondences in two frames. Given four or more region corresondences on the same planar surface, the motion and planar orientation parameters are first linearly estimated based on second-order approximation of the displacement field of the image plane. Then, using this linear estimate as an initial guess, a nonlinear estimate is obtained by iteratively minimizing an objective function using the exact experession of the displacement field. The objective function involves the centroids of corresponding regions and relationships among low-order moments. Through simulations, we show that the two-step region-based approach gives robust estimates. The performance of nonlinear region-based estimation is compared with that of linear region-based and point-based methods. Experimental results for two image pairs, on esynthetic and one real, ar epresented to show the practical applicability of our approach.

  • PDF

주파수 영역 Green 함수와 모멘트법을 이용한 유전체 평판 부착 다이폴 안테나의 특성해석 (Analysis of a Dipole Antenna Attached on a Dielectric Slab Using a Spectral-Domain Green's Function and the Method of Moments)

  • 오이석
    • 한국통신학회논문지
    • /
    • 제21권10호
    • /
    • pp.2703-2709
    • /
    • 1996
  • This paper proposes an exact numerical method for analyzing a dipole antenna attached on a dielectric slab. A Green's function for an infinitesimal current filament on a dielectric slab is derived and a field integral equation is formulated using a boundary condition. The moment Method is used to solve the field integral equation to otain current distribution on the antenna. Since an asymptotic function is used to compute the impedance matrix elements, the computataion time is significantly reduced. Using the computed current distributions, the input impedances, the resonance lengths and the resonant resistances of the antennas for various values of the thichnessandthe dielectric constant of the slab are obtained. It was found that the resonant length and the resonant resistance are decrease monotonically as the dielectric constant increases, however, those are changed up-and-down as the substrate thickness increases.

  • PDF

Dimensionless analysis of composite rectangular and circular RC columns

  • Massumi, Ali;Badkoubeh, Alireza
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.327-348
    • /
    • 2015
  • A numerical procedure is presented that provides ultimate curvature and moment domains for composite rectangular and circular cross-sections of reinforced concrete columns with or without an embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel section. A dimensionless formula is proposed that can be used for any section with similar normalized geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section (resistance load and moments) is calculated separately so that the influence of each geometric or mechanical parameter on the bearing capacity can be investigated separately.

Flight Dynamics Analyses of a Propeller-Driven Airplane (I): Aerodynamic and Inertial Modeling of the Propeller

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.345-355
    • /
    • 2014
  • This paper focuses on aerodynamic and inertial modeling of the propeller for its applications in flight dynamics analyses of a propeller-driven airplane. Unsteady aerodynamic and inertial loads generated by the propeller are formulated using the blade element method, where the local velocity and acceleration vectors for each blade element are obtained from exact kinematic relations for general maneuvering conditions. Vortex theory is applied to obtain the flow velocities induced by the propeller wake, which are used in the computation of the aerodynamic forces and moments generated by the propeller and other aerodynamic surfaces. The vortex lattice method is adopted to obtain the induced velocity over the wing and empennage components and the related influence coefficients are computed, taking into account the propeller induced velocities by tracing the wake trajectory trailing from each of the propeller blades. Aerodynamic forces and moments of the fuselage and other aerodynamic surfaces are computed by using the wind tunnel database and applying strip theory to incorporate viscous flow effects. The propeller models proposed in this paper are applied to predict isolated propeller performances under steady flight conditions. Trimmed level forward and turn flights are analyzed to investigate the effects of the propeller on the flight characteristics of a propeller-driven light-sports airplane. Flight test results for a series of maneuvering flights using a scaled model are employed to run the flight dynamic analysis program for the proposed propeller models. The simulations are compared with the flight test results to validate the usefulness of the approach. The resultant good correlations between the two data sets shows the propeller models proposed in this paper can predict flight characteristics with good accuracy.

AW-SNUUV I의 동유체력 계수 추정 (Estimation of Hydrodynamic Coefficients for AUV-SNUUV I)

  • 김기훈;김준영;신민섭;최항순;성우제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.201-204
    • /
    • 2002
  • This paper describes the hydrodynamic characteristics of a test-bed AUV SNUUV-I constructed at Seoul National University. The main purpose of the AUV is to carry out fundamental control and hydrodynamic experiments. Its configuration is basically a long cylinder of 1.35m in length and 0.25m in diameter with delta-type wings near its rear end. On the edge of each wing, a thruster of 1/4HP is mounted, which is used for both drive and turn the vehicle for horizontal movement as the output control power is varied. A pair of control surfaces installed near its font part generates pitch moments for vertical movement. The 6 DOF mathematical model of SNUUV-I contains hydrodynamic forces and moments expressed in terms of a set of hydrodynamic coefficients. These coefficients can be classified into linear damping coefficients, linear inertial coefficients and nonlinear damping coefficients. It is important to estimate the exact value of these coefficients to control the vehicle precisely. Among these, the linear coefficients are known to affect the motion of the vehicle dominantly. The linear damping coefficients are estimated by using Extended Kalman Filter. The responses of the vehicle to input signals are used to estimate the hydrodynamic coefficients, which can be inferred from output signals measured from an IMU (inertial motion unit) sensor, while the linear inertial coefficients are calculated by a potential code. By using these coefficients estimated as described above, a simulation program is constructed using Matlab.

  • PDF

수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성에 관한 비교 연구 (Comparative Study on the Applicability of Point Estimate Methods in Combination with Numerical Analysis for the Probabilistic Reliability Assessment of Underground Structures)

  • 박도현;김형목;류동우;최병희;한공창
    • 터널과지하공간
    • /
    • 제22권2호
    • /
    • pp.86-92
    • /
    • 2012
  • 점추정법은 exact probabilistic method로 간주되는 Monte Carlo simulation에 비해 계산의 정확도는 다소 떨어지지만, 성능함수의 통계 모멘트를 분석하기 위한 샘플링 수를 크게 줄일 수 있는 해석 과정에서의 간편함과 비교적 정확한 통계 모멘트의 계산으로 인해 지반 및 암반공학에서의 확률론적 신뢰성 평가에 자주 사용되고 있다. 본 연구에서는 Rosenblueth와 Zhou & Nowak의 점추정법과 Monte Carlo simulation의 계산 결과를 비교 분석하여 점추정법의 정확도와 적용성을 조사하였다. 비교 분석은 해석적 해가 주어진 탄성 지반내 원형터널의 라이닝 지보 문제를 대상으로 하였다. 분석 결과, 해석적 해가 비선형 함수임에도 불구하고, 점추정법과 Monte Carlo simulation에 의해 계산된 통계 모멘트가 평균 약 1-2%의 오차를 보여 수치해석과 연계한 지하구조물의 확률론적 신뢰성 평가를 위한 점추정법의 적용성을 확인하였다.

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

연속(連續)보의 영향선(影響線) 작도(作圖)에 관한 한 편법(便法) (A Simplified Method of Drawing Influence Lines for Continuous Beams)

  • 양창현
    • 대한토목학회논문집
    • /
    • 제13권3호
    • /
    • pp.45-57
    • /
    • 1993
  • 재래식(在來式) 구조해석기법(構造解析技法)으로 연속(連續)보를 해석(解析)할 때 다경간(多徑間)일수록 그 복잡성이 가중(加重)된다. 처짐각법(角法)이나 모멘트분배법(分配法) 마저도 그 실용성(實用性)이 제한적(制限的)이 된다. 본(本) 연구(硏究)에서는 사경간(四徑間)까지의 연속보에서 지점(支點) 모멘트를 구하는데, 더 개선(改善)된 정해법(正解法)을 개발하였고, 또한 모든 다경간(多徑間)의 연속(連續)보의 해석에 적용되는 전혀 새로운 근사해법(近似解法)을 제시하고 있다. 이 근사해법은 적용(適用)이 아주 간편하고 정확도(正確度)가 아주 높아서 거의 정해(正解)에 가까운 결과(結果)를 보여준다. 이들 해법(解法)은 특히 연속(連續)보의 영향선(影響線)의 작도(作圖)에 아주 편리하게 이용할 수 있으며, 지금까지 주로 많이 사용하는 Muller-Breslau의 원리(原理)와 비교할 때 월등하게 용이(容易)하다는 장점(長點)을 지니고 있다.

  • PDF