• Title/Summary/Keyword: exact approach

Search Result 627, Processing Time 0.027 seconds

Reliability analysis-based conjugate map of beams reinforced by ZnO nanoparticles using sinusoidal shear deformation theory

  • Keshtegar, Behrooz;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.195-207
    • /
    • 2018
  • First-order reliability method (FORM) is enhanced based on the search direction using relaxed conjugate reliability (RCR) approach for the embedded nanocomposite beam under buckling failure mode. The RCR method is formulated using discrete conjugate map with a limited scalar factor. A dynamical relaxed factor is proposed to control instability of proposed RCR, which is adjusted using sufficient descent condition. The characteristic of equivalent materials for nanocomposite beam are obtained by micro-electro-mechanical model. The probabilistic model of nanocomposite beam is simulated using the sinusoidal shear deformation theory (SSDT). The beam is subjected to external applied voltage in thickness direction and the surrounding elastic medium is modeled by Pasternak foundation. The governing equations are derived in terms of energy method and Hamilton's principal. Using exact solution, the implicit buckling limit state function of nanocomposite beam is proposed, which is involved various random variables including thickness of beam, length of beam, spring constant of foundation, shear constant of foundation, applied voltage, and volume fraction of ZnO nanoparticles in polymer. The robustness, accuracy and efficiency of proposed RCR method are evaluated for this engineering structural reliability problem. The results demonstrate that proposed RCR method is more accurate and robust than the excising reliability methods-based FORM. The volume fraction of ZnO nanoparticles and the applied voltage are the sensitive variables on the reliable levels of the nanocomposite beams.

Evaluation of vertical dynamic characteristics of cantilevered tall structures

  • Li, Q.S.;Xu, J.Y.;Li, G.Q.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.4
    • /
    • pp.357-372
    • /
    • 2001
  • In this paper, cantilevered tall structures are treated as cantilever bars with varying cross-section for the analysis of their free longitudinal (or axial) vibrations. Using appropriate transformations, exact analytical solutions to determine the longitudinal natural frequencies and mode shapes for a one step non-uniform bar are derived by selecting suitable expressions, such as exponential functions, for the distributions of mass and axial stiffness. The frequency equation of a multi-step bar is established using the approach that combines the transfer matrix procedure or the recurrence formula and the closed-form solutions of one step bars, leading to a single frequency equation for any number of steps. The Ritz method is also applied to determine the natural frequencies and mode shapes in the vertical direction for cantilevered tall structures with variably distributed stiffness and mass. The formulae proposed in this paper are simple and convenient for engineering applications. Numerical example shows that the fundamental longitudinal natural frequency and mode shape of a 27-storey building determined by the proposed methods are in good agreement with the corresponding measured data. It is also shown that the selected expressions are suitable for describing the distributions of axial stiffness and mass of typical tall buildings.

The numerical solution of dynamic response of SDOF systems using cubic B-spline polynomial functions

  • Shojaee, S.;Rostami, S.;Moeinadini, A.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.211-229
    • /
    • 2011
  • In this paper, we present a new explicit procedure using periodic cubic B-spline interpolation polynomials to solve linear and nonlinear dynamic equation of motion governing single degree of freedom (SDOF) systems. In the proposed approach, a straightforward formulation was derived from the approximation of displacement with B-spline basis in a fluent manner. In this way, there is no need to use a special pre-starting procedure to commence solving the problem. Actually, this method lies in the case of conditionally stable methods. A simple step-by-step algorithm is implemented and presented to calculate dynamic response of SDOF systems. The validity and effectiveness of the proposed method is demonstrated with four examples. The results were compared with those from the numerical methods such as Duhamel integration, Linear Acceleration and also Exact method. The comparison shows that the proposed method is a fast and simple procedure with trivial computational effort and acceptable accuracy exactly like the Linear Acceleration method. But its power point is that its time consumption is notably less than the Linear Acceleration method especially in the nonlinear analysis.

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Ray-optical determination of the coupling coefficients of waveguide gratings by use of the rigorous coupled wave theory (회절격자구조를 갖는 도파로 소자의 엄밀한 광선광학적 결합계수 계산)

  • 박선택;송석호;오차환;김필수
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.348-353
    • /
    • 1999
  • Ray-optics approach based on the rigorous coupled wave theory, called by the rigorous ray-optics method (RROM), is developed for the calculation of couling coefficients of waveguide grating devices. The coupling coefficients of several grating structures, such as rectangular, sinusoidal, triangle, and trapezoidal shapes, are determined by the RROM, and they are compared with those obtained by conventional methods of the ray-optics method (ROM) and the coupled mode method (CMM). In the case of rectangular gratings, the coupling coefficients is evaluated in detail by various depths and duty-cycles of the grating. We have found that the RROM gives more exact solutions for the coupling coefficients of even arbitrary shapes of diffractive waveguide grating devices than the other conventional methods.

  • PDF

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Effects Analysis of Partial Discharge Signal Propagation Characteristics in Underground Transmission Cables Using EMTP (EMTP를 이용한 지중송전케이블의 부분방전 신호 전파특성 분석)

  • Jung, Chae-Kyun;Jang, Tai-In
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.5
    • /
    • pp.629-635
    • /
    • 2014
  • This paper describes propagation characteristics obtained by considering semiconducting screen and cross-bonding in underground transmission cables. The semiconducting screen of power cable has effect on propagation characteristics including attenuation, velocity and surge impedance. However, it is very difficult to apply the semiconduction screen for EMTP model because of the number of conductors limitation. Therefore, CIGRE WG 21-05 proposed advanced insulation structure and analysis technique of simplified approach including inner and outer semiconducting screen. In this paper, the various propagation characteristics analyse using this structure and technique for 154kV XLPE $2000mm^2$ cable. The frequency independent model of EMTP CABLE PARAMETER is used for just pattern analysis of propagation characteristics. For exact data analysis, the frequency dependent model of J-marti is used for EMTP modeling. From these result, various propagation characteristics of 154kV XLPE $2000mm^2$ cable according to semi conducting screen consideration, frequency range, cable length and pulse width are analysed. In addition, in this paper, the effects of cross-bonding are also variously discussed according to cross-bonding methods, direct connection and impedance of lead cable.

A Study on Optimal Design of Single Periodic, Multipurpose Batch Plants

  • Rhee, In-Hyoung;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The purpose of this paper is to describe the design of a general multipurpose batch process or plant in terms of a series of mathematical programing models, and to develop approach solution methodologies. The proposed model for a single period is based on the formulation (MINLP; Mixed Integer Nonlinear Programming) of Papageorgaki and Reklaitis [1], but was linearized (MILP; Mixed Integer Linear Programming) so as to obtain an exact and practical solution, and to allow treatment of uncertainties to be considered in expanding the plant. As a solution strategy a modified Benders' Decomposition was introduced and was tested on three example problems. The optimizing solver, OSL code provided by the IBM Corporation, was used for solving the problems. The solution method was successful in that it showed remarkable reduction in the computing times as compared with the direct solution method.

  • PDF

Genetic Polymorphism of Interleukin 10 Gene and Sasang Constitution in Bell's Palsy Patients

  • Kim, Jong-Won;Seo, Jung-Chul;Jung, Tae-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.515-519
    • /
    • 2005
  • We hypothesized that the IL10 gene is important candidate in the development of Bell's palsy and specific genotypic and allelic variations should be associated with Bell's palsy in the Korean population. In this study, we assessed the SNP (single-nucleotide polymorphism) of IL10 in patients with Bell's palsy. 62 patients with Bell's palsy were selected from the subjects who visited for the Bell's palsy service of the department of acupuncture & moxibustion, college of Oriental Medicine, Daegu Haany University from May 2002 to May 2003. Pyrosequencing was performed for genetic analyses. There was no statistically significant genotypic distribution difference between control and Bell's palsy group And there was not statistically significant allelic frequency difference between control and Bell's palsy group. In this study the IL10 genotypemight not be the risk factor of Bell's palsy patients in Korean. studies will be necessary for the exact genetic markers. Establishment of more systemic approach and high quality of prospective cohorts will be necessary for the good prediction of genetic markers.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • 최재성;길현권;홍석윤
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.181-192
    • /
    • 2001
  • The power flow analysis (PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrary direction. The point force generates the out-of-plane vibration associated wish flexural waves and the in-plane vibration associated with longitudinal and shear waves. The energy governing equation for each type of waves was introduced and solved to Predict the vibrational energy density and intensity generated by the out-of-plane and in-plane components of the point force in an arbitrary direction. The wave transmission approach was used to consider the mode conversion at the joint of the coupled plates. Numerical results for vibrational energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF