• Title/Summary/Keyword: exact

Search Result 8,068, Processing Time 0.028 seconds

An exact solution for free vibrations of a non-uniform beam carrying multiple elastic-supported rigid bars

  • Lin, Hsien-Yuan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.399-416
    • /
    • 2010
  • The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of a multi-step beam carrying multiple rigid bars, with each of the rigid bars possessing its own mass and rotary inertia, fixed to the beam at one point and supported by a translational spring and/or a rotational spring at another point. Where the fixed point of each rigid bar with the beam does not coincide with the center of gravity the rigid bar or the supporting point of the springs. The effects of the distance between the "fixed point" of each rigid bar and its center of gravity (i.e., eccentricity), and the distance between the "fixed point" and each linear spring (i.e., offset) are studied. For a beam carrying multiple various concentrated elements, the magnitude of each lumped mass and stiffness of each linear spring are the well-known key parameters affecting the free vibration characteristics of the (loaded) beam in the existing literature, however, the numerical results of this paper reveal that the eccentricity of each rigid bar and the offset of each linear spring are also the predominant parameters.

Comparison of Step-Wise and Exact Maximum Likelihood Estimations on Cell Probabilities of Contingency Table (단계별로 얻어진 이차원 분할표의 모수 추정을 위한 정확최대우도추정법과 단계별추출추정법의 비교)

  • Lee, Sang-Eun;Kang, Kee-Hoon;Jeung, Seok-O;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.67-77
    • /
    • 2010
  • In multinomial scheme with step-wise sampling, maximum likelihood estimates of multinomial probabilities are improved when some frequencies are merged. In this study, for cell probabilities in a I by J independent contingency tables, exact MLE and step-wise estimation methods are applied and the results are compared using MSE and Bias.

Statistical Study on Heredity in SaSang Constitutional Medicine (사상체질(四象體質)의 유전성(遺傳性) 검토(檢討)에 대한 통계적(統計的) 연구(硏究))

  • Kim, Dae-yun;Lee, Jae-won;Kim, Dal-rai
    • Journal of Sasang Constitutional Medicine
    • /
    • v.11 no.1
    • /
    • pp.159-168
    • /
    • 1999
  • Purpose : Sasang Constitutional Medicine explains the pathology peculiar to constitution and suggests treatment for each constitution. In Sasang Constitutional Medicine hwnan beings are classified on four groups; Taeyangin, Taeumin, 5oyangin, Soeumin. These four constitution has their's own symptoms and treatments. In treatment, control of mind inclination, that is to say, moderation takes a very important role. But the study on heredity in Sasang Constitutional Medicine has not done not biological study but also statistical study. So we used several statistical methods and analyzed 163 samples. Methods : We implemented Fishers exact test for adjusting chi-squared test, kappa coefficient to estimate agreement of parent's and children's constitutions, and finally plotted bi-plot using correspondence analysis. Results : From Fisher's exact test result, we could know that parent's and children'S constitution's distribution had significant difference. In kappa coefficient, mother and daughter's estimated value produced highest result. In correspondence analysis we only plotted the case of mother and son for easy interpretation. Conclusion : In the study of heredity of SaSang constitution, we cannot know exactly the heredity of constitution in terms of biology or genetics. But this research can be helpful for further analysis, that is, a study of biological or genetical aspects. And we could conclude that in statistical aspects the heredity in SaSang constitution is meaningful.

  • PDF

Thermal Stresses in a Bimaterial Axisymmetric Disk-Approximate and Exact Solutions (복합 재료로 구성된 축대칭 원판에서의 열응력)

  • 정철섭;김기석
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.173-186
    • /
    • 1995
  • It is well known that structures constructed by bonding two or more materials and then subjected to temperature change experience thermal stress. This stress results from thermal expansion mismatch of materials. The present paper derives formulas for the stresses in a bimaterial axisymmetric disk which is subjected to a uniform temperature change. First, an approximate solution following strength-of-materials principles is developed. However, the strength-of-materials solution has difficulty in predicting both the peak value of interfacial stresses and its associated distribution. Next, a solution consistent with the theory of elasticity is developed by way of an eigenfunction expansion approach. The eigenfunction analysis is compared with finite element stress analysis results for a specific numerical example. Finite element analysis results show that the interfacial stresses are adequately predicted by eigenfunction solution. Therefore, the method developed in this paper will be useful in determination of the interfacial stress state.

  • PDF

On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Lin, Hsien-Yuan;Tsai, Ying-Chien
    • Structural Engineering and Mechanics
    • /
    • v.22 no.6
    • /
    • pp.701-717
    • /
    • 2006
  • In the existing reports regarding free transverse vibrations of the Euler-Bernoulli beams, most of them studied a uniform beam carrying various concentrated elements (such as point masses, rotary inertias, linear springs, rotational springs, spring-mass systems, ${\ldots}$, etc.) or a stepped beam with one to three step changes in cross-sections but without any attachments. The purpose of this paper is to utilize the numerical assembly method (NAM) to determine the exact natural frequencies and mode shapes of the multiple-step Euler-Bernoulli beams carrying a number of lumped masses and rotary inertias. First, the coefficient matrices for an intermediate lumped mass (and rotary inertia), left-end support and right-end support of a multiple-step beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact natural frequencies and the associated mode shapes of the vibrating system are determined by equating the determinant of the last overall coefficient matrix to zero and substituting the corresponding values of integration constants into the associated eigenfunctions, respectively. The effects of distribution of lumped masses and rotary inertias on the dynamic characteristics of the multiple-step beam are also studied.

The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.153-176
    • /
    • 2003
  • From the equation of motion of a "bare" non-uniform beam (without any concentrated elements), an eigenfunction in term of four unknown integration constants can be obtained. When the last eigenfunction is substituted into the three compatible equations, one force-equilibrium equation, one governing equation for each attaching point of the concentrated element, and the boundary equations for the two ends of the beam, a matrix equation of the form [B]{C} = {0} is obtained. The solution of |B| = 0 (where ${\mid}{\cdot}{\mid}$ denotes a determinant) will give the "exact" natural frequencies of the "constrained" beam (carrying any number of point masses or/and concentrated springs) and the substitution of each corresponding values of {C} into the associated eigenfunction for each attaching point will determine the corresponding mode shapes. Since the order of [B] is 4n + 4, where n is the total number of point masses and concentrated springs, the "explicit" mathematical expression for the existing approach becomes lengthily intractable if n > 2. The "numerical assembly method"(NAM) introduced in this paper aims at improving the last drawback of the existing approach. The "exact"solutions in this paper refer to the numerical results obtained from the "continuum" models for the classical analytical approaches rather than from the "discretized" ones for the conventional finite element methods.

Exact vibration of Timoshenko beam combined with multiple mass spring sub-systems

  • El-Sayed, Tamer A.;Farghaly, Said H.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.989-1014
    • /
    • 2016
  • This paper deals with the analysis of the natural frequencies, mode shapes of an axially loaded beam system carrying ends consisting of non-concentrated tip masses and three spring-two mass sub-systems. The influence of system design and sub-system parameters on the combined system characteristics is the major part of this investigation. The effect of material properties, rotary inertia and shear deformation of the beam system is included. The end masses are elastically supported against rotation and translation at an offset point from the point of attachment. Sub-systems are attached to center of gravity eccentric points out of the beam span. The boundary conditions of the ordinary differential equation governing the lateral deflections and slope due to bending of the beam system including developed shear force frequency dependent terms, due to the sub.system suspension, have been formulated. Exact formulae for the modal frequencies and the modal shapes have been derived. Based on these formulae, detailed parametric studies are carried out. The geometrical and mechanical parameters of the system under study have been presented in non-dimensional analysis. The applied mathematical model is presented to cover wide range of mechanical, naval and structural engineering applications.

NEW RESULTS TO BDD TRUNCATION METHOD FOR EFFICIENT TOP EVENT PROBABILITY CALCULATION

  • Mo, Yuchang;Zhong, Farong;Zhao, Xiangfu;Yang, Quansheng;Cui, Gang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.755-766
    • /
    • 2012
  • A Binary Decision Diagram (BDD) is a graph-based data structure that calculates an exact top event probability (TEP). It has been a very difficult task to develop an efficient BDD algorithm that can solve a large problem since its memory consumption is very high. Recently, in order to solve a large reliability problem within limited computational resources, Jung presented an efficient method to maintain a small BDD size by a BDD truncation during a BDD calculation. In this paper, it is first identified that Jung's BDD truncation algorithm can be improved for a more practical use. Then, a more efficient truncation algorithm is proposed in this paper, which can generate truncated BDD with smaller size and approximate TEP with smaller truncation error. Empirical results showed this new algorithm uses slightly less running time and slightly more storage usage than Jung's algorithm. It was also found, that designing a truncation algorithm with ideal features for every possible fault tree is very difficult, if not impossible. The so-called ideal features of this paper would be that with the decrease of truncation limits, the size of truncated BDD converges to the size of exact BDD, but should never be larger than exact BDD.

Exact Constrained Optimal Design (정확최적실험계획법)

  • Kim, Young-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.299-308
    • /
    • 2009
  • It is very rare to conduct an experimental design with a single objective in mind. since we have uncertainties in model and its assumptions. Basically we have three approaches in literature to handle this problem, the mini-max, compound, constrained experimental design. Since Cook and Wong (1994) announced the equivalence between the compound and the constrained design, many constrained experimental design approaches have adopted the approximate design algorithm of compound experimental design. In this paper we attempt to modify the row-exchange algorithm under exact experimental design setting, not approximate experimental design one. This attempt will provide more realistic design setting for the field experiment. In this process we proposed another criterion on how to set the constrained experimental design. A graph to show the general issue of infeasibility, which occurs quite often in constrained experimental design, is suggested.

Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotary inertia

  • Wang, Jee-Ray;Liu, Tsung-Lung;Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Because of complexity, the literature regarding the free vibration analysis of a Timoshenko beam carrying "multiple" spring-mass systems is rare, particular that regarding the "exact" solutions. As to the "exact" solutions by further considering the joint terms of shear deformation and rotary inertia in the differential equation of motion of a Timoshenko beam carrying multiple concentrated attachments, the information concerned is not found yet. This is the reason why this paper aims at studying the natural frequencies and mode shapes of a uniform Timoshenko beam carrying multiple intermediate spring-mass systems using an exact as well as a numerical assembly method. Since the shear deformation and rotary inertia terms are dependent on the slenderness ratio of the beam, the shear coefficient of the cross-section, the total number of attachments and the support conditions of the beam, the individual and/or combined effects of these factors on the result are investigated in details. Numerical results reveal that the effect of the shear deformation and rotary inertia joint terms on the lowest five natural frequencies of the combined vibrating system is somehow complicated.