A competitive coevolutionary algorithm is a probabilistic search method that imitates coevolution process through evolutionary arms race. The algorithm has been used to solve adversarial problems. In the algorithms, the selection of competitors is needed to evaluate the fitness of an individual. The goal of this study is to compare and analyze several competition strategies in terms of solution quality, convergence speed, balance between competitive coevolving species, population diversity, etc. With two types of test-bed problems, game problems and solution-test problems, extensive experiments are carried out. In the game problems, sampling strategies based on fitness have a risk of providing bad solutions due to evolutionary unbalance between species. On the other hand, in the solution-test problems, evolutionary unbalance does not appear in any strategies and the strategies using information about competition results are efficient in solution quality. The experimental results indicate that the tournament competition can progress an evolutionary arms race and then is successful from the viewpoint of evolutionary computation.
The physical protection systems of Nuclear Power Plant are utilized to safeguard targets against intrude by attacker. As the methods employed by attackers to intrude Nuclear Power Plant become increasingly complex and diverse, there is an urgent need to identify optimal defense strategies to interrupt adversary intrusions. This paper focuses on studying the defense of security personnel against adversary intrusions and utilizes an evolutionary game approach to select the optimal defense decisions for physical protection systems. Under the assumption of bounded rationality for both the attacker and defender, the paper constructs replication dynamic equations for attack and defense strategies, investigating the process of strategy selection and the stability of evolution. Finally, a minimal model is proposed to validate the feasibility of utilizing the evolutionary game model for defense strategy selection.
The challenge is to control unstable nonlinear dynamic systems using only sparse feedback from the environment concerning its performance. The design of such controllers can be achieved by evolving neural networks. An evolutionary approach to train neural networks in realtime is proposed. Evolutionary strategies adapt the weights of neural networks and the threshold values of neuron's synapses. The proposed method has been successfully implemented for pole balancing problem.
In recent years, for the purpose of solving the problem regarding environment protection and resource saving, certain measures and policies have been promoted to establish a reverse supply chains (RSCs) with material flows from collection of used products to reuse the recycled parts in production of products. It is necessary to analyze behaviors of RSC members to determine the optimal operation. This paper discusses a RSC with a retailer and a manufacturer and verifies the behavior strategies of RSC members which may change over time in response to changes parameters related to the recycling promotion activity in RSC. A retailer takes two behaviors: cooperation/non-cooperation in recycling promotion activity. A manufacturer takes two behaviors: monitoring/non-monitoring of behaviors of the retailer. Evolutionary game theory combining the evolutionary theory of Darwin with game theory is adopted to clarify analytically evolutionary outcomes driven by a change in each behavior of RSC members over time. The evolutionary stable strategies (ESSs) for RSC members' behaviors are derived by using the replicator dynamics. The analysis numerically demonstrates how parameters of the recycling promotion activity: (i) sale promotion cost, (ii) monitoring cost, (iii) compensation and (iv) penalty cost affect the judgment of ESSs of behaviors of RSC members.
본 논문에서는 다양한 돌연변이 전략을 인식하기 위해 MUDE (Uniform Local Search)를 사용한 다중 인구 차등 진화 알고리즘을 제안한다. MUDE에서 집단은 진화 비율(DE/rand/1 및 DE/current-to-rand/1)에 따라 서로 다른 돌연변이 전략을 수행하는 다른 집단 크기를 가진 여러 하위 집단으로 나뉜다. 인구의 다양성을 개선하기 위해 정보는 소프트 아일랜드 모델에 의해 하위 인구 간에 마이그레이션된다.
게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.
Symbiotic evolutionary algorithms, also called cooperative coevolutionary algorithms, are stochastic search algorithms that imitate the biological coevolution process through symbiotic interactions. In the algorithms, the fitness evaluation of an individual required first selecting symbiotic partners of the individual. Several partner selection strategies are provided. The goal of this study is to analyze how much partnering strategies can influence the performance of the algorithms. With two types of test-bed problems: the NKC model and the binary string covering problem, extensive experiments are carried out to compare the performance of partnering strategies, using the analysis of variance. The experimental results indicate that there does not exist statistically significant difference in their performance.
Evolutionary algorithms are probabilistic optimization algorithms based on the model of natural evolution. Recently the efforts to improve the performance of evolutionary algorithms have been made extensively. In this paper, we introduce the research for improving the convergence rate and search faculty of evolution algorithms by using reinforcement learning. After providing an introduction to evolution algorithms and reinforcement learning, we present adaptive genetic algorithms, reinforcement genetic programming, and reinforcement evolution strategies which are combined with reinforcement learning. Adaptive genetic algorithms generate mutation probabilities of each locus by interacting with the environment according to reinforcement learning. Reinforcement genetic programming executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. Reinforcement evolution strategies use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length.
This study aims to classify the types of financial super apps and analyzes their evolution and growth paths by type. Super apps, which provide various services on a single platform, are gaining attention as a key strategy for digital transformation in the financial sector. By adopting the grounded theory methodology, this research has categorized financial super apps into three types: "lifestyle financial super app", "integrated financial super app", and "universal financial super app". Ansoff Matrix was used as a theoretical framework to understand how each type of super app grew and evolved through various strategies. Our analysis revealed that super apps of each type grew using a different mix of 'market penetration', 'product development', 'mark et development', and 'diversification' strategies, with each mix showcasing a distinct evolutionary path. The findings of this study are expected to enhance understanding of financial super app typology and evolutionary trajectories, contributing to the development of practical strategies, such as channel optimization for financial super apps in the future.
International Journal of Control, Automation, and Systems
/
제2권4호
/
pp.463-474
/
2004
Game theory is a method of mathematical analysis developed to study the decision making process. In 1928, Von Neumann mathematically proved that every two-person, zero-sum game with many pure finite strategies for each player is deterministic. In the early 50's, Nash presented another concept as the basis for a generalization of Von Neumann's theorem. Another central achievement of game theory is the introduction of evolutionary game theory, by which agents can play optimal strategies in the absence of rationality. Through the process of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy (ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, Kauffman proposed the NK model to analyze coevolutionary dynamics between different species. He showed how coevolutionary phenomenon reaches static states and that these states are either Nash equilibrium or ESS in game theory. Since studies concerning coevolutionary phenomenon were initiated, there have been numerous other researchers who have developed coevolutionary algorithms. In this paper we propose a new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) and we confirm that this algorithm can be a solution of evolutionary problems by searching the ESS. To evaluate this newly designed approach, we solve several test Multiobjective Optimization Problems (MOPs). From the results of these evaluations, we confirm that evolutionary game can be embodied by the coevolutionary algorithm and analyze the optimization performance of our algorithm by comparing the performance of our algorithm with that of other evolutionary optimization algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.