• Title/Summary/Keyword: evolutionary robotics

Search Result 112, Processing Time 0.019 seconds

POSITION AND POSTURE ESTIMATION OF 3D-OBJECT USING COLOR AND DISTANCE INFORMATION

  • Ji, Hyun-Jong;Takahashi, Rina;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.535-540
    • /
    • 2009
  • Recently, autonomous robots which can achieve the complex tasks have been required with the advance of robotics. Advanced robot vision for recognition is necessary for the realization of such robots. In this paper, we propose a method to recognize an object in the actual environment. We assume that a 3D-object model used in our proposal method is the voxel data. Its inside is full up and its surface has color information. We also define the word "recognition" as the estimation of a target object's condition. This condition means the posture and the position of a target object in the actual environment. The proposal method consists of three steps. In Step 1, we extract features from the 3D-object model. In Step 2, we estimate the position of the target object. At last, we estimate the posture of the target object in Step 3. And we experiment in the actual environment. We also confirm the performance of our proposal method from results.

  • PDF

Evolutionary Optimization of Pulp Digester Process Using D-optimal DOE and RSM

  • Chu, Young-Hwan;Chonghun Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.395-395
    • /
    • 2000
  • Optimization of existing processes becomes more important than the past as environmental problems and concerns about energy savings stand out. When we can model a process mathematically, we can easily optimize it by using the model as constraints. However, modeling is very difficult for most chemical processes as they include numerous units together with their correlation and we can hardly obtain parameters. Therefore, optimization that is based on the process models is, in turn, hard to perform. Especially, f3r unknown processes, such as bioprocess or microelectronics materials process, optimization using mathematical model (first principle model) is nearly impossible, as we cannot understand the inside mechanism. Consequently, we propose a few optimization method using empirical model evolutionarily instead of mathematical model. In this method, firstly, designing experiments is executed fur removing unecessary experiments. D-optimal DOE is the most developed one among DOEs. It calculates design points so as to minimize the parameters variances of empirical model. Experiments must be performed in order to see the causation between input variables and output variables as only correlation structure can be detected in historical data. And then, using data generated by experiments, empirical model, i.e. response surface is built by PLS or MLR. Now, as process model is constructed, it is used as objective function for optimization. As the optimum point is a local one. above procedures are repeated while moving to a new experiment region fur finding the global optimum point. As a result of application to the pulp digester benchmark model, kappa number that is an indication fur impurity contents decreased to very low value, 3.0394 from 29.7091. From the result, we can see that the proposed methodology has sufficient good performance fur optimization, and is also applicable to real processes.

  • PDF