• Title/Summary/Keyword: evolutionary optimal design

Search Result 137, Processing Time 0.026 seconds

Design of Fuzzy Logic Controller of HVDC using an Adaptive Evolutionary Algorithm (적응진화 알고리즘을 이용한 초고압 직류계통의 퍼지제어기 설계)

  • Choe, Jae-Gon;Hwang, Gi-Hyeon;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.5
    • /
    • pp.205-211
    • /
    • 2000
  • This paper presents an optimal design method for fuzzy logic controller (FLC) of HVDC using an Adaptive Evolutionary Algorithm(AEA). We have proposed the AEA which uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary algorithms. The AEA is used for tuning fuzzy membership functions and scaling constants. Simulation results show that disturbances are well damped and the dynamic performances of FLC have better responses than those of PD controller when AC system load changes suddenly.

  • PDF

A Design of Fuzzy Controllers of HVDC System Using Adaptive Evolutionary Algorithm (적응진화알고리즘을 이용한 HVDC 계통의 퍼지제어기 설계)

  • Choi, Jae-Kon;Hwang, Gi-Hyun;Park, Je-Young; Park, June-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.160-162
    • /
    • 1999
  • This paper presents an optimal design method for fuzzy controllers of HVDC system using adaptive evolutionary algorithm(AEA). We have proposed an adaptive evolutionary algorithm which uses a genetic algorithm and an evolution strategy in an adaptive manner in order to take merits of two different evolutionary computations. AEA is used for tuning fuzzy membership functions, scaling constants and PD gains. The simulation results show that the disturbances are well damped by both controllers and the dynamic performances of fuzzy controllers have better responses than those of PD controllers when mechanical torque changes suddenly.

  • PDF

Evolutionary Design of Morphology-Based Homomorphic Filter for Feature Enhancement of Medical Images

  • Hwang, Hee-Soo;Oh, Jin-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.172-177
    • /
    • 2009
  • In this paper, a new morphology-based homomorphic filtering technique is presented to enhance features in medical images. The homomorphic filtering is performed based on the morphological sub-bands, in which an image is morphologically decomposed. An evolutionary design is carried to find an optimal gain and structuring element of each sub-band. As a search algorithm, Differential Evolution scheme is utilized. Simulations show that the proposed filter improves the contrast of the interest feature in medical images.

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.

Optimal Design of a Linear Structural Control System Considering Loading Uncertainties (하중의 불확실성을 고려한 선형구조제어 시스템의 최적설계)

  • Park, Won-Suk;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • An optimal design method for a structural control system considering load variations due to their uncertain characteristics is studied in this paper. The conventional design problem for a control system generally deals with the optimization problem of a structural control system and interaction between the structure and the control device. This study deals with the optimization problem of a load-structure-control system and the more complicated interactions with each other. The problem of finding the load that maximizes the structural responses and the structural control system that minimizes the responses simultaneously is formulated as the min-max problem. In order to effectively obtain the optimal design variables, a co-evolutionary algorithm is adopted and, as a result, an optimal design procedure for the linear structural control system with uncertain dynamic characteristics is proposed. The example design and simulated results of an earthquake excited structure validates the proposed method.

A Co-Evolutionary Approach for Learning and Structure Search of Neural Networks (공진화에 의한 신경회로망의 구조탐색 및 학습)

  • 이동욱;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.111-114
    • /
    • 1997
  • Usually, Evolutionary Algorithms are considered more efficient for optimal system design, However, the performance of the system is determined by fitness function and system environment. In this paper, in order to overcome the limitation of the performance by this factor, we propose a co-evolutionary method that two populations constantly interact and coevolve. In this paper, we apply coevolution to neural network's evolving. So, one population is composed of the structure of neural networks and other population is composed of training patterns. The structure of neural networks evolve to optimal structure and, at the same time, training patterns coevolve to feature patterns. This method prevent the system from the limitation of the performance by random design of neural network structure and inadequate selection of training patterns. In this time neural networks are trained by evolution strategies that are able to apply to the unsupervised learning. And in the coding of neural networks, we propose the method to maintain nonredundancy and character preservingness that are essential factor of genetic coding. We show the validity and the effectiveness of the proposed scheme by applying it to the visual servoing of RV-M2 robot manipulators.

  • PDF

Optimized AI controller for reinforced concrete frame structures under earthquake excitation

  • Chen, Tim;Crosbie, Robert C.;Anandkumarb, Azita;Melville, Charles;Chan, Jcy
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This article discusses the issue of optimizing controller design issues, in which the artificial intelligence (AI) evolutionary bat (EB) optimization algorithm is combined with the fuzzy controller in the practical application of the building. The controller of the system design includes different sub-parts such as system initial condition parameters, EB optimal algorithm, fuzzy controller, stability analysis and sensor actuator. The advantage of the design is that for continuous systems with polytypic uncertainties, the integrated H2/H∞ robust output strategy with modified criterion is derived by asymptotically adjusting design parameters. Numerical verification of the time domain and the frequency domain shows that the novel system design provides precise prediction and control of the structural displacement response, which is necessary for the active control structure in the fuzzy model. Due to genetic algorithm (GA), we use a hierarchical conditions of the Hurwitz matrix test technique and the limits of average performance, Hierarchical Fitness Function Structure (HFFS). The dynamic fuzzy controller proposed in this paper is used to find the optimal control force required for active nonlinear control of building structures. This method has achieved successful results in closed system design from the example.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

Optimal Design Technique of SRM using CAD and Genetic Algorithm (유전알고리즘과 CAD기법을 이용한 SRM의 최적설계법)

  • Kim Tae-Hyoung;Ahn Jin-Woo;Park Han-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.54-57
    • /
    • 2004
  • In this paper, an optimal design method to have a good performance is researched. The parameters which are senstive to the performance are examined and determined by using evolutionary computations and commercial CAD program to have a good performance. Design method simulated is compared with conventional procedure.

  • PDF

Optimal Design of SRM using Genetic Algorithm and Performance Analysis using FEM (유전알고리즘을 이용한 SRM의 최적설계와 FEM을 통한 성능해석)

  • Kim Tae-Hyoung;Ahn Jin-Woo;Hwang Gi-Hyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1031-1033
    • /
    • 2004
  • In this paper, an optimal design method to have a good performance is researched. The parameters which are senstive to the performance are examined and determined by using evolutionary computations and commercial CAD program to have good performance. Design method simulated is compared with conventional procedure.

  • PDF