• Title/Summary/Keyword: evolutionary approach

Search Result 292, Processing Time 0.03 seconds

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

An Improved Differential Evolution for Economic Dispatch Problems with Valve-Point Effects (개선된 DE 알고리즘을 이용한 전력계통의 경제급전)

  • Jeong, Yun-Won;Lee, Joo-Won;Jeong, Sang-Yun;Park, Jong-Bae;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.848-849
    • /
    • 2007
  • This paper presents an efficient approach for solving the economic dispatch (ED) problems with valve-point effects using differential evolution (DE). A DE, one of the evolutionary algorithms (EAs), is a novel optimization method capable of handling nonlinear, non-differentiable, and nonconvex functions. And an efficient constraints treatment method (CTM) is applied to handle the equality and inequality constraints. The resultant DE-CTM algorithm is very effective in solving the ED problems with nonconvex cost functions. To verify the superiority of the proposed method, a sample ED problem with valve-point effects is tested and its results are compared with those of previous works. The simulation results clearly show that the proposed DE-CTM algorithm outperforms other state-of-the-art algorithms in solving ED problems with valve-point effects

  • PDF

Bond Graph/Genetic Programming Based Automated Design Methodology for Multi-Energy Domain Dynamic Systems (멀티-에너지 도메인 동적 시스템을 위한 본드 그래프/유전프로그래밍 기반의 자동설계 방법론)

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.677-682
    • /
    • 2006
  • Multi-domain design is difficult because such systems tend to be complex and include a mixtures of electrical, mechanical, hydraulic, and thermal components. To design an optimal system, unified and automated procedure with efficient search technique is required. This paper introduces design method for multi-domain system to obtain design solutions automatically, combining bond graph which is domain independent modeling tool and genetic programming which is well recognized as a powerful tool for open-ended search. The suggested design methodology has been applied for design of electric fitter, electric printer drive, and and pump system as a proof of concept for this approach.

Modes of Innovation and the National Systems of Innovation of the BRICS Economies

  • Scerri, Mario
    • STI Policy Review
    • /
    • v.5 no.2
    • /
    • pp.20-42
    • /
    • 2014
  • The Brazil, Russia, India China and South Africa (BRICS) group has emerged as a collection of large economies which are outside the traditional groups of industrialised "first world" economies and which have altered the global distribution of economic power. The basis of their emergence is a combination of their size and growth rates, and the fact that they lie outside the established centres of global economic power. As such, they have "diversified" the power base of the global economic order. The question which is asked in this paper is whether the phenomenon of the BRICS goes beyond this to mark the start of a possible challenge to the neoliberal orthodoxy which emerged as the globally dominant policy paradigm since the collapse of the Soviet Union. This paper develops and uses a "modes of innovation" approach to explore the potential of the BRICS to constitute a structural rupture in the current globally dominant neoliberal mode of innovation. This question is important since, in the absence of this rupture, the remarkable development trajectory of the BRICS will serve to reinforce the legitimacy of the global orthodoxy. The paper first articulates the modes of innovation concept and then proceeds to locate the BRICS systems of innovation within the current globally dominant mode. On this basis it then provides an appraisal of the possible impact of the BRICS on the evolutionary path of the global system of innovation.

A Conceptual Analysis of Korean Elders' Yangsaeng in Nursing (간호학적 한국노인의 양생(養生) 개념분석)

  • Gu, Min Kyung
    • Research in Community and Public Health Nursing
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Purpose: This study tries to analyze the concept of Yangsaeng in the Korean aged, with focus on nursing. Methods: Rodgers' evolutionary approach was used to identify the common definitions, attributes, antecedents, and consequences of the Yangsaeng concept for the aged. Literature search was conducted at the NAL, NDSL, RISS, ProQuest, PubMed, AMED, and MEDLINE databases from 2004 to 2016, using the keywords "Yangsaeng," "health promotion," "health management," "traditional oriental methods," and "traditional oriental nursing."Finally, 20 relevant articles were selected and thoroughly reviewed. Results: The analysis shows that the model of Yangsaeng for the Korean aged is that of personal adaptive-capacity, totality, challenging, and coping resource and includes physical, social and psychological health and wellness. Conclusion: This work provides some implications on the development of nursing intervention related with Yangsaeng for the Korean aged, and suggests the implementation of such intervention in the practice of Yangsaeng for the Korean aged. Therefore, a better understanding of the Korean aged and Yangsaeng within the context of nursing can be achieved.

Prediction and control of buildings with sensor actuators of fuzzy EB algorithm

  • Chen, Tim;Bird, Alex;Muhammad, John Mazhar;Cao, S. Bhaskara;Melvilled, Charles;Cheng, C.Y.J.
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.307-315
    • /
    • 2019
  • Building prediction and control theory have been drawing the attention of many scientists over the past few years because design and control efficiency consumes the most financial and energy. In the literature, many methods have been proposed to achieve this goal by trying different control theorems, but all of these methods face some problems in correctly solving the problem. The Evolutionary Bat (EB) Algorithm is one of the recently introduced optimization methods and providing researchers to solve different types of optimization problems. This paper applies EB to the optimization of building control design. The optimized parameter is the input to the fuzzy controller, which gives the status response as an output, which in turn changes the state of the associated actuator. The novel control criterion for guarantee of the stability of the system is also derived for the demonstration in the analysis. This systematic and simplified controller design approach is the contribution for solving complex dynamic engineering system subjected to external disturbances. The experimental results show that the method achieves effective results in the design of closed-loop system. Therefore, by establishing the stability of the closed-loop system, the behavior of the closed-loop building system can be precisely predicted and stabilized.

Cost-based optimization of shear capacity in fiber reinforced concrete beams using machine learning

  • Nassif, Nadia;Al-Sadoon, Zaid A.;Hamad, Khaled;Altoubat, Salah
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.671-680
    • /
    • 2022
  • The shear capacity of beams is an essential parameter in designing beams carrying shear loads. Precise estimation of the ultimate shear capacity typically requires comprehensive calculation methods. For steel fiber reinforced concrete (SFRC) beams, traditional design methods may not accurately predict the interaction between different parameters affecting ultimate shear capacity. In this study, artificial neural network (ANN) modeling was utilized to predict the ultimate shear capacity of SFRC beams using ten input parameters. The results demonstrated that the ANN with 30 neurons had the best performance based on the values of root mean square error (RMSE) and coefficient of determination (R2) compared to other ANN models with different neurons. Analysis of the ANN model has shown that the clear shear span to depth ratio significantly affects the predicted ultimate shear capacity, followed by the reinforcement steel tensile strength and steel fiber tensile strength. Moreover, a Genetic Algorithm (GA) was used to optimize the ANN model's input parameters, resulting in the least cost for the SFRC beams. Results have shown that SFRC beams' cost increased with the clear span to depth ratio. Increasing the clear span to depth ratio has increased the depth, height, steel, and fiber ratio needed to support the SFRC beams against shear failures. This study approach is considered among the earliest in the field of SFRC.

An Application of Surrogate and Resampling for the Optimization of Success Probability from Binary-Response Type Simulation (이항 반응 시뮬레이션의 성공확률 최적화를 위한 대체모델 및 리샘플링을 이용한 유전 알고리즘 응용)

  • Lee, Donghoon;Hwang, Kunchul;Lee, Sangil;Yun, Won-young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.412-424
    • /
    • 2022
  • Since traditional derivative-based optimization for noisy simulation shows bad performance, evolutionary algorithms are considered as substitutes. Especially in case when outputs are binary, more simulation trials are needed to get near-optimal solution since the outputs are discrete and have high and heterogeneous variance. In this paper, we propose a genetic algorithm called SARAGA which adopts dynamic resampling and fitness approximation using surrogate. SARAGA reduces unnecessary numbers of expensive simulations to estimate success probabilities estimated from binary simulation outputs. SARAGA allocates number of samples to each solution dynamically and sometimes approximates the fitness without additional expensive experiments. Experimental results show that this novel approach is effective and proper hyper parameter choice of surrogate and resampling can improve the performance of algorithm.

Heterotopia images of fashion space represented on Instagram - Focusing on the case of Ader Space in Korea -

  • Syachfitrianti Gadis Nadia;Se Jin Kim
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.4
    • /
    • pp.467-488
    • /
    • 2023
  • The purpose of this study is to determine the concepts of heterotopic image and fashion space, and the characteristics of fashion space and images from the perspective of fashion brands and users. This study examines the evolution of fashion space and consumers with it, based on Foucault's theory of heterotopia, which refers to spaces that blend contradictory features not typically found within a single physical structure. This is accomplished by employing a single case study of Ader Error's Ader Space, a Seoul-based brand known for its unique approach to presenting and communicating fashion. Based on an analysis of Instagram posts of Ader Error along with the hashtag searches "aderspace" and "adererror", this study categorizes heterotopia from the perspective of fashion brands into three properties: fashion space as a medium for selling fashion products; fashion space as getaway to hybrid fashion practices; and fashion space as an illusionary place to experience fashion. From the user perspective, the heterotopic image of Ader Space portrayed on Instagram is characterized by the image of fashion products in an extraordinary fashion space, the image of a fashion space beyond space and time, and the image of exposing the hidden and the illusion-compensation of fashion space. This study contributes to a heightened understanding of the evolutionary concept of the fashion space.

Dynamic intelligent control of composite buildings by using M-TMD and evolutionary algorithm

  • Chen, ZY;Meng, Yahui;Wang, Ruei-Yuan;Peng, Sheng-Hsiang;Yang, Yaoke;Chen, Timothy
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.591-598
    • /
    • 2022
  • The article deals with the possibilities of vibration stimulation. Based on the stability analysis, a multi-scale approach with a modified whole-building model is implemented. The motion equation is configured for a controlled bridge with a MDOF (multiple dynamic degrees of freedom) Tuned Mass Damper (M-TMD) system, and a combination of welding, excitation, and control effects is used with its advanced packages and commercial software submodel. Because the design of high-performance and efficient structural systems has been of interest to practical engineers, systematic methods of structural and functional synthesis of control systems must be used in many applications. The smart method can be stabilized by properly controlling the high frequency injection limits. The simulation results illustrate that the multiple modeling method used is consistent with the accuracy and high computational efficiency. The M-TMD system, even with moderate reductions in critical pressure, can significantly suppress overall feedback on an unregulated design.