• 제목/요약/키워드: evolutionary analysis

검색결과 575건 처리시간 0.029초

Genomic and evolutionary analysis with gluten proteins of major food crops in the Triticeae tribe

  • Kim, Sang Heon;Seo, Yong Weon
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.86-86
    • /
    • 2017
  • Prolamins are the main seed storage proteins in cereals. Gluten proteins seem to be prolamins because their primary structure have the meaningful quantity of proline and glutamine amino acid residues. Gluten proteins are found in crops such as wheat (Triticum aestivum), barley (Hordeum vulgare), and rye (Secale cereale) which are major food crops in the Triticeae tribe. Glutenin and gliadin, hordein, and secalin are typical gluten proteins found in wheat, barley, and rye, respectively. Gluten affect grain quality so that many researches, such as isolation or characterization of their genes, have been carried out. To improve the quality of grains in the Triticeae tribe, it is necessary to understand the relationship within their gluten proteins and their evolutionary changes. The sequences of nucleotides and amino acids of gluten protein including glutenins, gliadins, hordeins, and secalins were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) and Uniprot (http://www.uniprot.org/). The sequence analysis and the phylogenetic analysis of gluten proteins were performed with various website tools. The results demonstrated that gluten proteins were grouped with their homology and were mostly corresponded with the previous reports. However, some genes were moved, duplicated, or disappeared as evolutionary process. The obtained data will encourage the breeding programs of wheat, barley, rye, and other crops in the Triticeae tribe.

  • PDF

Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.447-456
    • /
    • 1999
  • This paper presents a solution method, which can be regarded as the further extension of the generalized evolutionary method (Zhao et al. 1998a), for the simultaneous optimization of several different natural frequencies of a structure in general and a two dimensional structure in particular. The main function of the present method is to optimize the topology of a structure so as to simultaneously make several different natural frequencies of interest to be of the corresponding different desired values for the target structure. In order to develop the present method, the new contribution factor of an element is proposed to consider the contribution of an element to the gaps between the currently calculated values for the different natural frequencies of interest and their corresponding desired values in a weighted manner. Using this new contribution factor of an element, the most inefficiently used material can be detected and removed gradually from the design domain of a structure. Through applying the present method to optimize two and three different natural frequencies of a two dimensional structure, it has been demonstrated that it is possible and applicable to use the generalized evolutionary method for tackling the simultaneous optimization of several different natural frequencies of a structure in the structural design.

Diversification and domain evolution of molluskan metallothioneins: a mini review

  • Nam, Yoon Kwon;Kim, Eun Jeong
    • Fisheries and Aquatic Sciences
    • /
    • 제20권6호
    • /
    • pp.8.1-8.18
    • /
    • 2017
  • Background: Metallothionein (MT) is a multifunctional protein playing important roles in homeostatic regulation and detoxification of metals. Mollusk species have been considered as useful sentinel platforms for MT-based biomarker approaches, and they have been reported to display an extraordinary structural diversity of MT proteins. However, potential diversity of molluskan MTs has not been fully explored and recent updates have suggested the need of revision of evolutionary hypothesis for molluskan MTs. Results: Based on bioinformatic analysis and phylogenetic evidences, novel divergence mechanisms and paths were hypothesized in both gastropod and bivalve MT groups. Our analyses are suggestive of the taxon- or lineage-specific domain multiplication/duplication from the ancestral or prototypic MT. Diversification and selection of molluskan MTs might be driven by the needs for acquiring metal selectiveness, specialized novel function, and improved capacity of metal detoxification under environmentally stressed conditions. Conclusion: The structural diversity and variations of molluskan MTs are significantly larger than previously understood. Undoubtedly, molluskan MTs have undergone dynamic divergent processes in their evolutionary histories, giving rise to the great diversity of domain structures in extant MT isoforms. Novel evolutionary paths for molluskan MTs newly proposed in this review could shed additional light onto the revision of the hypothesis for evolutionary differentiation of MTs in the molluskan lineage.

Genomic Insights into the Rice Blast Fungus through Estimation of Gene Emergence Time in Phylogenetic Context

  • Choi, Jaeyoung;Lee, Jong-Joon;Jeon, Junhyun
    • Mycobiology
    • /
    • 제46권4호
    • /
    • pp.361-369
    • /
    • 2018
  • The rice blast fungus, Magnaporthe oryzae, is an important pathogen of rice plants. It is well known that genes encoded in the genome have different evolutionary histories that are related to their functions. Phylostratigraphy is a method that correlates the evolutionary origin of genes with evolutionary transitions. Here we applied phylostratigraphy to partition total gene content of M. oryzae into distinct classes (phylostrata), which we designated PS1 to PS7, based on estimation of their emergence time. Genes in individual phylostrata did not show significant biases in their global distribution among seven chromosomes, but at the local level, clustering of genes belonging to the same phylostratum was observed. Our phylostrata-wide analysis of genes revealed that genes in the same phylostratum tend to be similar in many physical and functional characteristics such as gene length and structure, GC contents, codon adaptation index, and level of transcription, which correlates with biological functions in evolutionary context. We also found that a significant proportion of genes in the genome are orphans, for which no orthologs can be detected in the database. Among them, we narrowed down to seven orphan genes having transcriptional and translational evidences, and showed that one of them is implicated in asexual reproduction and virulence, suggesting ongoing evolution in this fungus through lineage-specific genes. Our results provide genomic basis for linking functions of pathogenicity factors and gene emergence time.

A Concept Analysis of Gratitude in Patients Based on Rodgers' Evolutionary Method

  • Jung, Miran;Han, Kuemsun
    • International Journal of Contents
    • /
    • 제13권2호
    • /
    • pp.44-49
    • /
    • 2017
  • This article presents a concept analysis of the gratitude experience of diseased patients. The Rodgers' Evolutionary Method was used for conducting the analysis. A search of CINAHL, MEDLINE, PsycARTICLES, and Springer databases was conducted using "gratitude or appreciation or thanks" and "patient or illness" as a key word, 22 final articles were selected. Three critical attributes of gratitude in patients were identified: positive emotions, acceptance of the current status, and a driving force to plant the will of life. In addition, two antecedents of gratitude in patients were identified: interactions with people or the environment, and the perception of a favorable stimuli or help. Two consequences of gratitude in patients were identified: an increased compliance in implemented treatment, and an enhancement of trust relationship. The concept analysis describes diseased patients' gratitude. This paper will become the basis for future clinical research related to diseased patients' gratitude.

Biogeography and Distribution Pattern of a Korean Wood-eating Cockroach Species, Cryptocercus kyebangensis, Based on Genetic Network Analysis and DNA Sequence Information

  • Park, Yung-Chul;Choe, Jae-Chun
    • Journal of Ecology and Environment
    • /
    • 제30권4호
    • /
    • pp.331-340
    • /
    • 2007
  • We examined the evolutionary and ecological processes shaping current geographical distributions of a Korean wood-eating cockroach species, Cryptocercus kyebangensis. Our research aims were to understand evolutionary pattern of DNA sequences, to construct genetic network of Cryptocercus kyebangensis local populations and to understand evolutionary and ecological processes shaping their current geographical distribution patterns via DNA sequence information and genetic networks, using sequence data of two genes (ITS-2 and AT region) from local populations of C. kyebangensis. The results suggest that the ITS-2 and AT region are appropriate molecular markers for elucidating C. kyebangensis geographic patterns at the population level. The MSN-A based on the ITS-2 showed two possible routes, the Hwaak-san and Myeongji-san route and the Seorak-san and Gyebang-san route, for migration of ancestral C. kyebangensis into South Korea. The MSNs (MSN-A and -B) elucidate migration routes well within South Korea, especially the route of Group I and Group II.

Decentralized Load-Frequency Control of Interconnected Power Systems with SMES Units and Governor Dead Band using Multi-Objective Evolutionary Algorithm

  • Ganapathy, S.;Velusami, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.443-450
    • /
    • 2009
  • This paper deals with the design of decentralized controller for load-frequency control of interconnected power systems with superconducting magnetic energy storage units and Governor Dead Band Nonlinearity using Multi-Objective Evolutionary Algorithm. The superconducting magnetic energy storage unit exhibits favourable damping effects by suppressing the frequency oscillations as well as stabilizing the inter-area oscillations effectively. The proposed control strategy is mainly based on a compromise between Integral Squared Error and Maximum Stability Margin criteria. Analysis on a two-area interconnected thermal power system reveals that the proposed controller improves the dynamic performance of the system and guarantees good closed-loop stability even in the presence of nonlinearities and with parameter changes.

Evolutionary status of four detached binary stars

  • Kanjanasakul, Chanisa
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • We have presented the evolutionary status of four detached double line spectroscopic eclipsing binaries which are CD Tau, CM Lac, HS Hya and ZZ Boo because the component stars of these binary systems still act as a single star. We determined the absolute dimensions of these binary systems using photometric and spectroscopic solutions from analysis of light curves and radial velocity curves. Using the luminosities, effective temperatures and masses we choose evolutionary tracks of these binary systems. Finally we obtained ages and metallicity of the stars. We found that CM Lac and HS Hya are very young stars and their ages are in range of 0.15-1.05 and 0.22-1.14 Gyrs. For CD Tau and ZZ Boo, they are older than the others and their age in range of 1.95-2.95 and 1.48-1.73 Gyrs.

  • PDF

연속탐색공간에 대한 진화적 해석 (Evolutionary Analysis for Continuous Search Space)

  • 이준성;배병규
    • 한국지능시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.206-211
    • /
    • 2011
  • 본 논문에서는 연속적인 파라미터 공간에 대한 최적화에 대해 진화적 알고리즘의 특징적인 형상화를 제시한다. 이 방법은유전알고리즘이 연속적인 탐색공간에서의 파라미터 식별에 대해 가장 강점을 지녔다는 점에 착안한 것이다. 유전알고리즘과 제안한 알고리즘과의 주요한 차이점은 개별적 또는 연속적인 묘사의 차이가 있다는 것이다. 잘 알려진 실험함수의 최적화문제를 도입하여 연속 탐색공간 문제에 대해 제안하는 알고리즘에 대해 계산시간 및 사용메모리 등의 성능이 우수하다는 효율성을 보였다.

Evolutionary History of Two Paralogous Glyceraldehyde 3-Phosphate Dehydrogenase Genes in Teleosts

  • Kim, Keun-Yong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제11권3호
    • /
    • pp.177-181
    • /
    • 2008
  • Glyceraldehyde 3-phosphate dehydrogenase(GAPDH) is a key enzyme for carbohydrate metabolism in most living organisms. Recent reports and our own searches of teleost species in publicly available genomic databases have identified at least two distinct GAPDH genes in a given species. The two GAPDH genes are located on the same chromosome in teleosts, whereas they are located on the different chromosomes in mammals. Thus, we reconstructed a phylogenetic tree to better understand the evolutionary history of the GAPDH genes in the vertebrate lineage. Our phylogenetic analysis revealed unambiguously that the two GAPDH genes of teleosts are phylogenetically closely affiliated to one of the cytosolic GAPDH and spermatogenic GAPDH-S of mammals. This indicates that the two paralogous GAPDH genes shared a common ancestor and subsequently underwent a gene duplication event during early vertebrate evolution. However, GAPDH-S of teleosts showed significant differences in the polypeptide residues and tissue distribution of its mRNA transcripts from that of mammals, implying they have undergone a different history of functionalization.