• 제목/요약/키워드: evolution-stars

검색결과 296건 처리시간 0.028초

Expansion of Dusty H II Regions and Its Impact on Disruption of Molecular Clouds

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Ostriker, Eve
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.58.3-59
    • /
    • 2015
  • Dynamical expansion of H II regions plays a key role in dispersing surrounding gas and therefore in limiting the efficiency of star formation in molecular clouds. We use analytic methods and numerical simulations to explore expansions of spherical dusty H II regions, taking into account the effects of direct radiation pressure, gas pressure, and total gravity of the gas and stars. Simulations show that the structure of the ionized zone closely follows Draine (2011)'s static equilibrium model in which radiation pressure acting on gas and dust grains balances the gas pressure gradient. Strong radiation pressure creates a central cavity and a compressed shell at the ionized boundary. We analytically solve for the temporal evolution of a thin shell, finding a good agreement with the numerical experiments. We estimate the minimum star formation efficiency required for a cloud of given mass and size to be destroyed by an HII region expansion. We find that typical giant molecular clouds in the Milky Way can be destroyed by the gas-pressure driven expansion of an H II region, requiring an efficiency of less than a few percent. On the other hand, more dense cluster-forming clouds in starburst environments can be destroyed by the radiation pressure driven expansion, with an efficiency of more than ~30 percent that increases with the mean surface density, independent of the total (gas+stars) mass. The time scale of the expansion is always smaller than the dynamical time scale of the cloud, suggesting that H II regions are likely to be a dominant feedback process in protoclusters before supernova explosions occurs.

  • PDF

OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE

  • KO JONGWAN;IM MYUNGSHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.149-151
    • /
    • 2005
  • We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that $r_e(V)s$ (half-light radii measured in V-band) are in general larger than $r_e(K)s$ (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.

SEJONG OPEN CLUSTER SURVEY. I. NGC 2353

  • Lim, Beom-Du;Sung, Hwan-Kyung;Karimov, R.;Ibrahimov, M.
    • 천문학회지
    • /
    • 제44권2호
    • /
    • pp.39-48
    • /
    • 2011
  • UBV I CCD photometry of NGC 2353 is performed as a part of the "Sejong Open cluster Survey" (SOS). Using photometric membership criteria we select probable members of the cluster. We derive the reddening and distance to the cluster, i.e., E(B - V ) = 0.10 ${\pm}$ 0.02 mag and 1.17 ${\pm}$ 0.04 kpc, respectively. We find that the projected distribution of the probable members on the sky is elliptical in shape rather than circular. The age of the cluster is estimated to be log(age)=8.1 ${\pm}$ 0.1 in years, older than what was found in previous studies. The minimum value of binary fraction is estimated to be about 48 ${\pm}$ 5 percent from a Gaussian function fit to the distribution of the distance moduli of the photometric members. Finally, we also obtain the luminosity function and the initial mass function (IMF) of the probable cluster members. The slope of the IMF is ${\Gamma}=-1.3{\pm}0.2$.

THE H$\beta$ INDEX AND THE AGES OF OLD STELLAR SYSTEMS

  • Yoon, Seok-Jin;Lee, Hyun-Chul;Lee, Young-Wook
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권1호
    • /
    • pp.53-58
    • /
    • 1998
  • The $H{\beta}$ and some metal line indices, such as Mg2, Fe52 of single-age and single-metallicity populations are computed based on the method of evolutionary population synthesis, with careful consideration of the variation of the horizontal-branch morphology with metallicity and age. We find (a) that while metal lines are little af-fected, the $H{\beta}$ index is severely enhanced (up to 30%)by the presence of the blue horizontal-branch stars, frustrating the current age-estimations from this index with out careful consideration of these stars, and (b) that there is a systematic trend in the sense that the globular clusters in giant elliptical galaxies appear to be older than those in our Galaxy by several billion years. We also calculate these indices for the stellar populations with a metallicity spread, by adopting metallicity distribution functions predicted by chemical evolution models. The comparison of the models with the observed indices of the central regions of the early-type galaxies yields the results (a) that the ages of the giant elliptical galaxies would be older than the previous estimations by several billion years, and (b) that there is a considerable age spread among elliptical galaxies, in the sense that the giant elliptical galaxies are older than small ones.

  • PDF

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

Evolutionary properties of red supergiants with MESA

  • Chun, Sang-Hyun;Jung, Moo-Keon;Kim, Dong uk;Kim, Jihoon;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.42.1-42.1
    • /
    • 2017
  • We investigate the evolutionary properties of red supergiant stars (RSGs), using stellar evolution model of Modules for Experiments in Stellar Astrophysics (MESA). In this study, we calculate models with mass range of 9-39M_sun and several different convection parameters (e.g. mixing length, overshooting, and semiconvection) at SMC, LMC, Milky Way, and M31 metallicities. We compare the calculated evolutionary tracks with observed RSGs in SMC, LMC, Milky Way and M31, and discuss appropriate input physical parameters in model calculation. We find that a larger mixing length parameter is necessary for M31 metallicity to fit the positions of RSGs in H-R diagram, compared to lower metallicity environments. Theoretically predicted numbers of yellow supergiant stars (YSGs) are also compared with the observed population. We find that Ledoux models with semiconvection can better explain the number of YSGs. Finally, we investigate the final radius, final star mass, and final hydrogen envelope mass of RSGs and discussed the their properties as type II-P supernova progenitors.

  • PDF

Evidence of Stellar Substructures on the Near-infrared Image of M31 System

  • Kang, Minhee;Chun, Sang-Hyun;Sohn, Young-Jong
    • 천문학회보
    • /
    • 제39권1호
    • /
    • pp.41.2-41.2
    • /
    • 2014
  • Hierarchical merging scenario indicates that galaxies go through major and minor merger events during their formation and evolution. As a result of the merging, substructural features of remnants such as stellar stream are shown around a current galaxy system. To find evidence of stellar substructures on M31 system, we used the near-infrared images of JHK filters obtained from the Wide Field Camera (WFCAM) at UKIRT 3.8m. A total sky coverage is an area of about$ 4.5^{\circ}{\times}6^{\circ}$ around M31. Indeed, M31 system which consists of several satellite systems contains stellar substructures such as giant stellar stream, loops, and spurs. By analysing stellar populations on the near-infrared color-magnitude diagrams, we selected member star candidates of each stellar substructure, from which we map out spatial distribution of stars in the vicinity of M31 system. Here, we present spatial density distribution maps of stars on each substructure over the entire field of M31 system. Also, we discuss the possible origin of the substructures and the implications on the galaxy assembly process.

  • PDF

Fundamental parameters of the eclipsing binaries in the Large Magellanic cloud

  • 홍경수;강영운
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.141.2-141.2
    • /
    • 2012
  • We present photometric solutions of the 26,212 eclipsing binaries discovered in the LMC by Graczyk et al. (2011). They published that 70 percent of a total are detached systems. Another 25 and 5 percent are semi-detached and contact binaries, respectively. We discovered that 21 percent of 26,121 eclipsing binary stars are eccentric orbit systems. The binary star distribution in the LMC is different from those of the Galactic center direction (Bade window). It is very interesting that there are only 5 of 357 (2 percent) stars have eccentric orbit in the Galactic Center (Kang 2011). We selected the light curve of 18,274 detached systems. Then we estimated the fundamental parameters on the basis of their photometric solutions and the semi-major-axis (a) assuming the distance modulus to the LMC~18.50. We compared the estimated fundamental parameters with an empirical mass-luminosity relation and consistency between mass-radius relation base on stellar evolution model in the low metallicity (Z=0.008) by Bertelli et al. (2009). This method allows for independent determine of the fundamental parameters of the eclipsing binaries in the LMC without the radial velocity curves.

  • PDF

Metal-Poor F-G-K type Local Subdwarfs From SDSS + GAIA GR2: Spectrophotometric & Kinematic Properties

  • Yang, Soung-Chul;Kim, Young Kwang;Lee, Young Sun;Lee, Hogyu
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • We introduce a new project of constructing a large spectro-photometric samples of metal-poor (i.e. [Fe/H] < -1.0) subdwarfs in the Galactic halo. The sample is collected from a compilation of the stellar objects that are cross-identified both in the Sloan Digital Sky Survey (SDSS) and recently published data from GAIA mission. The color range of the selected stars covers 0.0 < (g-r) < 2.0; thus the spectral types of our sample span from early F- through late K-type stars on the metal-poor main sequence (i.e. the local subdwarf sequence). We scrutinized the physical, chemical, and kinematical properties of our samples using their SDSS medium-resolution (R ~ 2000) spectra, combined with accurately measured proper motions from GAIA satellite. Our study will provide useful information on the global trend in the various properties (e.g. abundance pattern as a function of the galactocentric distance; rotational velocity vs [Fe/H] ${\cdots}$ etc) of the metal-poor subdwarf populations in the Galactic halo, which is ultimately important to better understand metal-poor stellar evolutionary models and chemical evolution of the Milky Way halo in the early phase of its formation. Further our comprehensive catalog of the Galactic field halo subdwarfs collected in this study will serve a solid groundwork for future follow-up high resolution spectroscopic observations on many interesting individual targets.

  • PDF

RELATIVE AGE DIFFERENCE BETWEEN THE METAL-POOR GLOBULAR CLUSTERS M53 AND M92

  • CHO, DONG-HWAN;SUNG, HYUN-IL;LEE, SANG-GAK;YOON, TAE SEOG
    • 천문학회지
    • /
    • 제49권5호
    • /
    • pp.175-192
    • /
    • 2016
  • CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B − V , V versus V − I, and V versus B − I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B − V ) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.