• Title/Summary/Keyword: evoked EMG

Search Result 40, Processing Time 0.019 seconds

A New Algorithm for Extracting Voluntary Component and Evoked Component from Mixed EMG (복합근전도로부터 자발성분과 유발성분을 추출하기 위한 알고리즘 개발)

  • Song, T.;Hwang, S.H.;Khang, G.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.502-511
    • /
    • 2008
  • This study was designed to develop a new algorithm to extract the voluntary EMG and the evoked EMG from a mixed EMG generated when the muscle is stimulated both voluntarily and by electrical stimulation in the FES system. The proposed parallel filter algorithm consists of three phases: (1) Fourier transform of the mixed EMG, (2) multiplication of the transformed signal to two frequency functions, and (3) inverse Fourier transform. Four incomplete spinal cord injured patients participated in the experiments to evaluate the algorithm by measuring the knee extensor torque and the EMG signals from the quadriceps. Two functions of the algorithms were evaluated: (1) extraction of the evoked EMG and (2) the voluntary EMG from the mixed EMG. The results showed that the algorithm enabled us to separate the two EMG components in real time from the mixed EMG. The algorithm can and will be used for estimating the voluntary torque and the evoked torque independently through an artificial neural network based on the two EMG components, and also for generating a trigger signal to control the on/off time of the FES system.

Study of Laryngeal Evoked Electromyography Method in Rats (백서를 이용한 후두 유발 근전도 검사 방법에 대한 연구)

  • 조선희;이재연;민선식;신유리;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.2
    • /
    • pp.178-184
    • /
    • 2000
  • Laryngeal evoked EMG is the objective and quantitative method to measure the innervation of laryngeal muscle. If there is a mobility disorder of vocal cords, the cause and location of neural lesion co be understood by the laryngeal evoked EMG and if there is a vocal cord paralysis, the degree of recovery and the policy of treatment can be determined by it. Recently, the studies of reinnervation after recurrent laryngeal nerve injury have been actively carried out. Laryngeal evoked EMC is useful to these studies. The aim of study is to know whether noninvasive methods for stimulating the recurrent laryngeal nerve and for recording of compound action potential(CAP) using surface electrode are as useful as the invasive method using needle electrode. We obtained EMG of laryngeal muscle by various stimulating and recording methods : 1) Direct nerve stimulation by placing nerve cuff electrode made out of silastic tube and platinum wire and recording by insertion of hook wire electrode into posterior cricoarytenoid(PCA) and thyroarytenoid(TA) muscles, respectively. 2) Recording of compound action potential by surface electrode after stimulation of recurrent laryngeal nerve by the insertion of 27 gauge of needle electrode. 3) Recording of compound action potential by surface electrode after stimulating the recurrent laryngeal nerve by transcutaneous blunt rod electrode at tracheoesophageal groove. The amplitude, duration and latency of the CAP evoked by recurrent laryngeal nerve stimulation were compared among the three groups. The amplitude of CAP was smallest in the group recorded from posterior cricoarytenoid and hyroarytenoid muscle, and that recorded by surface electrode after stimulation by needle electrode was largest. The difference in amplitude between the group by hook wire recording and the two groups by surface electrode recording was significant statistically. There is no significant difference in duration and latency among three groups. Since the waveform of CAP from all three methods has similar duration, latency, we concluded that noninvasive method is a useful as invasive methods.

  • PDF

Principles of Intraoperative Neurophysiological Monitoring with Insertion and Removal of Electrodes (수술 중 신경계감시검사에서 검사에 따른 전극의 삽입 및 제거방법)

  • Lim, Sung Hyuk;Park, Soon Bu;Moon, Dae Young;Kim, Jong Sik;Choi, Young Doo;Park, Sang Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • Intraoperative neurophysiological monitoring (INM) examination identifies the damage caused to the nervous system during surgery. This method is applied in various surgeries to validate the procedure being performed, and proceed with confidence. The assessment is conducted in an operating room, using subdermal needle electrodes to optimize the examination. There are no textbooks or guides for the correct stimuli and recording areas for the surgical laboratory test. This article provides a detailed description of the correct stimuli and recording parts in motor evoked potential (MEP), somatosensory evoked potential (SSEP), brainstem auditory evoked potentials (BAEP) and visual evoked potentials (VEP). Free-running Electromyography (EMG) is an observation of the EMG that occurs in the muscle, wherein the functional state of most cranial nerves and spinal nerve roots is determined. In order to help understand the test, an image depicting the inserting subdermal needle electrodes into each of the muscles, is attached. Furthermore, considering both the patient and the examiner, a safe method is suggested for removal of electrodes after conclusion of the test.

A Research on BCI using Coherence between EEG and EMG (EEG와 EMG의 Coherence을 이용한 BCI 연구)

  • Kim, Young-Joo;Whang, Min-Cheol;Kang, Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.9-14
    • /
    • 2008
  • Coherence can be used to evaluate the functional cortical connections between the motor cortex and muscle. This study is to find coherence between EEG (electroencephalogram) and EMG (electromyogram) evoked by movement of a hand. Seven healthy participants were asked to perform thirty repetitive movement of right hand for ten seconds with rest for ten seconds. Specific feature of EEG components has been extracted by ICA (independent component analysis) and coherence between EEG and EMG was analyzed from data measured EEG in five local areas around central part of head and EMG in flexer carpri radialis muscle during grabbing movement. Coherence between EEG and EMG was successfully obtained at 0.025 confidence limit during hand movement and showed significant difference between rest and movement at 13-18Hz.

Intraoperative Neurophysiological Monitoring during Microvascular Decompression Surgery for Hemifacial Spasm

  • Park, Sang-Ku;Joo, Byung-Euk;Park, Kwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.367-375
    • /
    • 2019
  • Hemifacial spasm (HFS) is due to the vascular compression of the facial nerve at its root exit zone (REZ). Microvascular decompression (MVD) of the facial nerve near the REZ is an effective treatment for HFS. In MVD for HFS, intraoperative neurophysiological monitoring (INM) has two purposes. The first purpose is to prevent injury to neural structures such as the vestibulocochlear nerve and facial nerve during MVD surgery, which is possible through INM of brainstem auditory evoked potential and facial nerve electromyography (EMG). The second purpose is the unique feature of MVD for HFS, which is to assess and optimize the effectiveness of the vascular decompression. The purpose is achieved mainly through monitoring of abnormal facial nerve EMG that is called as lateral spread response (LSR) and is also partially possible through Z-L response, facial F-wave, and facial motor evoked potentials. Based on the information regarding INM mentioned above, MVD for HFS can be considered as a more safe and effective treatment.

Intraoperative Neurophysiology Monitoring for Spinal Dysraphism

  • Kim, Keewon
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • Spinal dysraphism often causes neurological impairment from direct involvement of lesions or from cord tethering. The conus medullaris and lumbosacral roots are most vulnerable. Surgical intervention such as untethering surgery is indicated to minimize or prevent further neurological deficits. Because untethering surgery itself imposes risk of neural injury, intraoperative neurophysiological monitoring (IONM) is indicated to help surgeons to be guided during surgery and to improve functional outcome. Monitoring of electromyography (EMG), motor evoked potential, and bulbocavernosus reflex (BCR) is essential modalities in IONM for untethering. Sensory evoked potential can be also employed to further interpretation. In specific, free-running EMG and triggered EMG is of most utility to identify lumbosacral roots within the field of surgery and filum terminale or non-functioning cord can be also confirmed by absence of responses at higher intensity of stimulation. The sacral nervous system should be vigilantly monitored as pathophysiology of tethered cord syndrome affects the sacral function most and earliest. BCR monitoring can be readily applicable for sacral monitoring and has been shown to be useful for prediction of postoperative sacral dysfunction. Further research is guaranteed because current IONM methodology in spinal dysraphism is still deficient of quantitative and objective evaluation and fails to directly measure the sacral autonomic nervous system.

Clinical Application of Electromyography and Nerve Conduction Study (근전도와 신경전도 검사의 임상적 응용)

  • Kim Ho-Bong;Park Young-Han;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.10 no.1
    • /
    • pp.199-212
    • /
    • 1998
  • The purpose of this article is to summary about the application of electromyography and nerve conduction study. Electrodiagnostic studies, which include nerve conduction studies, electromyography, repetitive nerve stimulation, single fiber EMG, late response tests and evoked potential tests are a critical component of the neuromuscular evaluation.

  • PDF

Clinical Application of Electromyography and Nerve Conduction Study (근전도와 신경전도 검사의 임상적 응용)

  • Kim, Ho-Bong;Bae, Sung-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.5 no.2
    • /
    • pp.603-616
    • /
    • 1998
  • The purpose of this article is to summary about the application of electromyography and nerve conduction study. Electrodiagnostic studies, which include nerve conduction studies, electromyography, repetitive nerve stimulation, single fiber EMG, late response tests and evoked potential tests are a critical component of the neuromuscular evaluation.

  • PDF

Facial EMG pattern evoked by pleasant and unpleasant odor stimulus

  • Yamada, Hiroshi;Kaneki, Noriaki;Shimada, Koji;Okii, Hironori
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.11-15
    • /
    • 2002
  • Activities of venter frontalis, corrugator, levator labii superioris and greater zygomatic muscles were measured for five male subjects while they made pleasant, unpleasant and neutral facial expressions, and while they were presented pleasant, disgusting, and neutral odors. Pleasant expression and odor activated zygomatic muscles while unpleasant expression and odor increased corrugator muscle activity.

  • PDF

Masseteric EMG Signal Modeling Including Silent Period After Mechanical Stimulation (기계적 자극에 대한 휴지기를 포함한 교근의 근전도 신호 모델링)

  • Kim, Duck-Young;Lee, Sang-Hoon;Lee, Seung-Woo;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.541-549
    • /
    • 2001
  • The term 'silent period(SP)' refers to a transitory, relative or absolute decrease electromyography(EMG) activity, evoked in the midst of an otherwise sustained contraction. Masseteric SP is elicited by a tap on the chin during isometric contraction of masseter muscle. In this paper, a new EMG signal generation model including SP in masseter muscle is proposed. This work is based on the anatomical structure of trigeminal nerve system that related on temporomandibular joint(TMJ) dysfunction. And it was verified by comparing the real EMG signals including SP in masseter muscle to the simulated signals by the proposed model. Through this studies, it was shown that SP has relation to variable neurophysiological phenomena. A proposed model is based on the control system theory and DSP(Digital Signal Processing) theory, and was simulated using MATLAB simulink. As a result, the proposed SP model generated EMG signals which are similar to real EMG signal including normal SP and an abnormal extended SP. This model can be applied to the diagnosis of TMJ dysfunction and can effectively explain the origin of extended SP.

  • PDF