• Title/Summary/Keyword: evaporation paradox

Search Result 3, Processing Time 0.02 seconds

Seasonal changes in pan evaporation observed in South Korea and their relationships with reference evapotranspiration

  • Woo, Yin San;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.183-183
    • /
    • 2017
  • Pan evaporation (Epan) is an important indicator of water and energy balance. Despite global warming, decreasing annual Epan has been reported across different continents over last decades, which is claimed as pan evaporation paradox. However, such trend is not necessarily found in seasonal data because the level of contributions on Epan vary among meteorological components. This study investigates long-term trend in seasonal pan evaporation from 1908 to 2016 across South Korea. Meteorological variables including air temperature (Tair), wind speed (U), vapor pressure deficit (VPD), and solar radiation (Rs) are selected to quantify the effects of individual contributing factor to Epan. We found overall decreasing trend in Epan, which agrees with earlier studies. However, mixed tendencies between seasons due to variation of dominant factor contributing Epan were found. We also evaluated the reference evapotranspiration based on Penman-Monteith method and compared this with Epan to better understand the physics behind the evaporation paradox.

  • PDF

Changing climate in our lifetime: A review (우리 시대의 기후 변화를 돌아보다)

  • Paik, Kyungrock;Woo, Yin San
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1045-1056
    • /
    • 2018
  • During the last decades, considerable efforts have been spent for climate studies, in particular to better understand changing climate. In turn, several significant trends in climatic variables have been reported. Explaining such trends is challenging - some of them have been considered contradictory to another. Various hypotheses have also been suggested for general description of changing climate. At this point in time, it would be beneficial to look back and carefully recollect our knowledge about climate change. In this paper, we aim to provide a comprehensive review on our forefront knowledge in this context with focus on the trends in temperature, solar radiation, wind speed, evaporation, and precipitation. Major trends, namely warming, dimming, and stilling, are demonstrated together with evaporation paradox and increasing precipitation variability, using data at Seoul. On the basis of understanding these notions, we suggest four key implications to hydrologists and engineers.

Evapotranspiration Estimation Study Based on Coupled Water-energy Balance Theory in River Basin

  • Xue, Lijun;Kim, JooCheol;Li, Hongyan;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.146-146
    • /
    • 2018
  • Basin evapotranspiration is the result of water balance and energy balance, which is affected by climate and underlying surface characteristics, the process is complex, and spatial and temporal variability is large, the evapotranspiration estimation of river basin is an important but difficult problem in the field of hydrology, over the years, many scholars devoted to the basin actual evapotranspiration estimation and achieved excellent results. We discuss Budyko coupled water-energy balance theory and evaporation paradox, then use the Fu's equation to estimate actual evapotranspiration yearly in different areas with different dryness. The result shows that Fu's equation has high precision for estimating evapotranspiration yearly in our selected study area, and the estimation result has higher precision in the area with high dryness. Then, we propose an improved formula which can be used to estimate actual evapotranspiration monthly. Furthermore, we found that the parameter in the formula reflects general conditions of underlying surface and it is affected by several factors, at last, we tried to propose the calculation formula. The study indicates that Fu's equation provides a reliable method for evapotranspiration estimation in dry regions as well as semi-humid and semi-arid regions, which has great significance for forecasting river basin water resources and inquiring into ecological water requirement.

  • PDF