In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.1B
/
pp.47-62
/
2009
The climate change caused by global warming may affect on the hydro-meteorologic factor such as evaporation (IPCC, 2001). Furthermore, it is also necessary that the effect of climate change according to geographical condition on evaporation should be studied. In this study, considering geographical and topographical conditions, the 6 evaporation equations that have been applied to simulate annual and monthly pan evaporation were compared. 56 climatologic stations were selected and classified, basing on the geographical and topographical characteristics (urbanization, topographical slope, proximity to coast, and area of water body). The evaporation equations currently being used are applied. These evaporation equations are Penman, Kohler-Nordenson-Fox (KNF), DeBruin-Keijman, Priestley-Taylor, Hargreaves, and Rohwer. Furthermore, Penman equation was modified by calibrating the parameters of wind function and was verified using relative error. The study results indicate that the KNF equation compared best with the pan: relative error was 8.72%. Penman equation provided the next-best values for evaporation relative to the pan: relative error was 8.75%. The mass-transfer method (Rohwer) provided the worst comparison showing relative error of 33.47%. In case that there is a close correlation between wind function and wind speed, modified Penman equation provided a better estimate of pan evaporation.
Magazine of the Korean Society of Agricultural Engineers
/
v.43
no.2
/
pp.78-84
/
2001
The daily streamflow in the Yaluhe watershed located in the north-eastern part of China was simulated by DAWAST model and the water balance parameters of the model were calibrated by simplex method. Model verification tests were carried out. The range of root mean square error was 0.34∼1.50mm, that of percent error in volume was -16.9∼-62.0% and that of correlation coefficient was 0.727∼0.920. DAWAST model was revised to consider the phreatic evaporation from the ground water in the frozen soil by adjusting soil moisture content in the unsaturated layer at the end of the melting season. The results of estimation of the daily streamflow by the revised model were statistically improved, that is, the range of root mean square error was 0.31∼1.49mm, that of percent error in volume was -11.7∼-12.1%, and that of correlation coefficient was 0.810∼0.932. The accuracy of DAWAST model was improved and the applicability of DAWAST model was expanded to the frozen region.
The reliability of the measurement of ambient trace species is an important issue, especially, in background area such as Gosan in Jeju Island. In a previous episodic study, it was suggested that the PM10 measurement result by the gravimetric method(GMM) was not in agreement with the result by the ${\beta}$-ray absorption method(BAM). In this study, a systematic comparison was carried out for the data between 2001 and 2008 at Gosan(GMM and BAM) and Jeju city (BAM) which is near to Gosan. It was found that at Gosan the PM10 concentration by BAM was higher than GMM and the correlation between them was low. The BAM results at Gosan and Jeju city showed similar trend implying the discrepancy at Gosan was not caused by instrumental problem of the BAM at Gosan. Based on the previous studies two probable reasons for the discrepancy are identified; (1) negative measurement error by the evaporation of volatile ambient species at the filter in GMM such as nitrate and ammonium and (2) positive error by the absorption of water vapor during measurement in BAM. There was no heater at the inlet of BAM at Gosan during the sampling period. Based on the size-segregated measurement data, it was identified that the evaporation error was minor, if any. The relationship between the two methods did not vary with the ambient relative humidity. Thus, at present, it is not clear why the discrepancy had been occurring and when using the PM10 data at Gosan, one should be aware the possible errors.
Regarding the high significance of correct pan evaporation modeling, this study introduces two novel neuro-metaheuristic approaches to improve the accuracy of prediction for this parameter. Vortex search algorithms (VSA), sunflower optimization (SFO), and stochastic fractal search (SFS) are integrated with a multilayer perceptron neural network to create the VSA-MLPNN, SFO-MLPNN, and SFS-MLPNN hybrids. The climate data of Arcata-Eureka station (operated by the US environmental protection agency) belonging to the years 1986-1989 and the year 1990 are used for training and testing the models, respectively. Trying different configurations revealed that the best performance of the VSA, SFO, and SFS is obtained for the population size of 400, 300, and 100, respectively. The results were compared with a conventionally trained MLPNN to examine the effect of the metaheuristic algorithms. Overall, all four models presented a very reliable simulation. However, the SFS-MLPNN (mean absolute error, MAE = 0.0997 and Pearson correlation coefficient, RP = 0.9957) was the most accurate model, followed by the VSA-MLPNN (MAE = 0.1058 and RP = 0.9945), conventional MLPNN (MAE = 0.1062 and RP = 0.9944), and SFO-MLPNN (MAE = 0.1305 and RP = 0.9914). The findings indicated that employing the VSA and SFS results in improving the accuracy of the neural network in the prediction of pan evaporation. Hence, the suggested models are recommended for future practical applications.
The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$$E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.392-395
/
2017
본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.
Korean Journal of Air-Conditioning and Refrigeration Engineering
/
v.15
no.2
/
pp.152-158
/
2003
Titration method is one of the widely used methods for the concentration measurement of absorbent ammonia/water. However, this method is inconvenient because the solution should be extracted for the measurement. Moreover, significant error can be introduced by the evaporation of ammonia during the sampling and measuring procedure. In this study a reliable in-line concentration measurement method was proposed. To prove the validity of the concept, a measuring apparatus was designed, built, and tested with water. It is found that the location of flow inlet and exit is important in the measurement accuracy. The flow inlet and exit located in the middle of the test cell showed the best result. By the error analysis, it is expected that the ammonia concentration can be measured within the error of $\pm$0.18% assuming the error of 0.1 K in temperature measurement and 0.1 g in weight measurement.
Takuya, Komura;Toshitsugu, Moroizumi;Kenji, Okubo;Hiroaki, Furumai;Yoshiro, Ono
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.75-81
/
2008
The water shortage in mega cities in Asia, which face a rapid growth in urban population, is an outstanding problem. It is important, therefore, to accurately estimate the water balance in each city in order to use the limited water resources effectively. In this study, we estimated the potential water resources in し sixteen mega cities in Asia. The target cities were Delhi and Calcutta, India; Colombo, Sri Lanka; Dhaka, Bangladesh; Yangon, Myanmar; Bangkok, Thailand; Kuala Lumpur, Malaysia; Singapore; Jakarta, Indonesia; Hanoi, Vietnam; Beijing and Hong Kong, the People's Republic of China; Seoul, the People's Republic of Korea; Manila, the Philippines, and Sapporo and Tokyo, Japan. The potential water resources were estimated by subtracting the actual evaporation from the amount of rainfall. The actual evaporation was estimated using the potential evaporation obtained by Hamon's equation which requires the air temperature and the possible hours of sunshine. When the results of Hamon's and Penman's evaporation equations were compared, a considerable error appeared in the low latitude region. The estimation using Hamon's equation was corrected with the linear regression line of Hamon's and Penman's equations. A classification of the land cover was carried out based on satellite photographs of the target cities, and the volume of surface runoff for each city was obtained using the runoff ratios which depended on the land cover. As a result, the potential water resources in the above mega cities in Asia were found to be greater than the world average. However, the actual water resources which are available for one person to use are probably very limited.
In this study, the actual evapotranspiration products of Global Land Data Assimilation System (GLDAS), Global Land Evaporation Amsterdam Model (GLEAM) and MOD16, which are satellite- and reanalysis-based dataset, were validated at the flux tower sites (i.e., CFK and SMK) managed by Korea Institute of Hydrological Survey, and the uncertainty and correlation analysis were conducted using Triple Collocation (TC) method. The result of validation with the flux tower showed better agreement in the order of GLEAM> GLDAS>MOD16. At the result of three combinations (S1: flux tower vs. GLDAS vs. MOD16, S2: flux tower vs. GLDAS vs. GLEAM, S3: flux tower vs. GLEAM vs. MOD16), the order of best to worst is GLEAM, GLDAS, MOD16, and flux tower for CFK (GLDAS> GLEAM>MOD16>flux tower for SMK). Since the error variance and correlation coefficients of the flux tower show relatively worse performance in TC analysis than the other products, By applying TC method to three products (GLDAS vs. GLEAM vs. MOD16), the uncertainty of each dataset were evaluated at the Korean Peninsula, As a results, the GLDAS and GLEAM performed reasonable performance (low error variance and high correlation coefficient), whereas results of MOD16 showed high error variance and low correlation coefficient at the cropland.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.