• Title/Summary/Keyword: evaporation effect

Search Result 778, Processing Time 0.034 seconds

The Effect of Microdroplet Shape on the Evaporation (미세액적의 형상이 증발에 미치는 효과)

  • Song, Hyun-Soo;Lee, Yong-Ku;Jin, Song-Wan;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.558-565
    • /
    • 2007
  • Many studies of microdroplet evaporation from solid surfaces were made with priority given to inkjet printing and dye painting techniques. The objective of these studies is how to evaporate a droplet quickly and uniformly. Also it is necessary to prevent evaporation of a droplet to observe cells in a droplet generated through cell-patterning. In general, an identical volume of a water droplet on hydrophobic surfaces evaporates slower than that on hydrophilic surfaces. In this study, we observe the evaporation process of a droplet on various hydrophobic surfaces and calculated the evaporation rate considering the droplet geometry such as contact angle and height. This study also proposes a new model based on the fact that evaporation mode at the edge of a droplet is different from that at the outer surface of a droplet as the contact angle changes during evaporation. Finally, we reveal the cause fur the increase of evaporation flux and show that the ratio of edge evaporation to total evaporation increases with time.

The effect of fuel evaporation in the intake valve back on mixture preparation (흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향)

  • 박승현;이종화;유재석;신영기;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

Alignment Effect of a Nematic Liquid Crystal on Deposited SiOx Thin-Film Surface with e-beam Evaporation

  • Oh, Yong-Cheul;Lee, Dong-Gyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.305-308
    • /
    • 2006
  • We have studied liquid crystal (LC) aligning capabilities for homeotropic alignment and the control of tilt angles on the $SiO_{x}$ thin film by electron beam evaporation method. A high tilt angle of about $86.5^{\circ}$ was obtained, and also the suitable tilt angle of the NLC on the $SiO_{x}$ thin film at $20{\sim}50\;nm$ thickness with e-beam evaporation can be achieved. The uniform LC alignment on the $SiO_{x}$ thin film surfaces with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $SiO_{x}$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $SiO_{x}$ thin film surface created by evaporation.

Effect of the Droplet Volume on the Evaporative Characteristics of Sessile Droplet (액적 체적이 증발 특성에 미치는 영향에 관한 수치해석 연구)

  • Jeong, Chan Ho;Lee, Hyung Ju;Kim, Hong Seok;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.26 no.2
    • /
    • pp.88-95
    • /
    • 2021
  • This study aims to investigate the influence of the droplet volume on the evaporation characteristics of the sessile droplet. In particular, the effect of the free convection in the vapor domain on the evaporation rate was analyzed through the numerical simulation. The commercial code of the ANSYS Fluent (V.2020 R2) was used to simulate the heat transfer in the liquid-vapor domain. Moreover, we used the diffusion model to estimate the evaporation rate for the different droplet volume under the room temperature. It was found that the evaporation rate significantly increases with the droplet volume because of the larger surface area for the mass transfer. Also, the effect of free convection on the evaporation rate becomes significant with an increment of droplet volume owing to the increase in the droplet radius corresponding to the characteristic length of the free convection.

Shadow Modeling using Z-map Algorithm for Process Simulation of OLED Evaporation

  • Lee, Eung-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.487-490
    • /
    • 2004
  • In order to simulate OLED evaporation process, modeling of directional distribution of the vaporized organic materials, film thickness distribution profile and pattern-mask shadow effect are required In accordance with many literatures; all of them except shadow effect modeling are studied and developed. In this paper, modeling algorithm of evaporation shadow is presented for process simulation of full-color OLED evaporating system. In OLED evaporating process the offset position of the point cell-source against the substrate rotation axis and the usage of the patterned mask are the principal causes for evaporation shadow. For geometric simulation of shadow using z-map, the film thickness profile, which is condensed on a glass substrate, is converted to the z-map data. In practical evaporation process, the glass substrate is rotated. This physical fact is solved and modeled mathematically for z-map simulation. After simulating the evaporation process, the z-map data can present the shadow-effected film thickness profile. Z-map is an efficient method in that the cross-sectional presentations of the film thickness profile and thickness distribution evaluation are easily and rapidly achieved.

  • PDF

Influence of Particle Size on Evaporation Heat Transfer Characteristics of Nanofluid Droplet (나노입자 크기에 따른 나노유체 액적의 증발 열전달 특성)

  • Lee, Hyung Ju;Kim, Dae Yun;Lee, Seong Hyuk
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2017
  • The present study investigates the evaporation heat transfer characteristics of nanofluid droplet for different nanoparticle sizes. Also, the heat transfer coefficient was measured at different nanoparticle concentrations during evaporation. From the experimental results, it is found that the evaporation behavior of sessile droplet can be considered as constant radius mode due to pinning effect. The total evaporation time of sessile droplet decreases with nanoparticle size up to 7.9% for 0.10 vol% nanofluid droplet. As nanoparticle concentration increases, the clear difference in heat transfer coefficient is observed, showing that the size effect should be examined. This result would be helpful in designing the correlation between the nanoparticle size and the heat transfer characteristics for various applications.

Modelling of evaporation from free water surface

  • Song, Wei-Kang;Chen, Yibo
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.237-245
    • /
    • 2020
  • The process of evaporation from free water surface was simulated in a large scale environmental chamber under various controlled atmospheric conditions and also was modelled by a new mass transfer model. Six evaporation tests were conducted with increasing wind speed and air temperature in the environmental chamber, and hence the effect of atmosphere parameters on the evaporation process and the corresponding response of water were investigated. Furthermore, based on the experiment results, seven general types of mass transfer models were evaluated firstly, and then a new model consisted of wind speed function and air relative humidity function was proposed and validated. The results show that the free water evaporation is mainly affected by the atmospheric parameters and the evaporation rate increases with the increasing air temperature and wind speed. Both the air and soil temperatures are affected by the energy transformation during water evaporation. The new model can satisfactorily describe the evaporation process from free water surface under different atmospheric conditions.

Study on students과 concepts of evaporation and condensation in elementary school (초등학교 학생들의 증발과 응결 개념에 대한 연구)

  • 이용복;이성미
    • Journal of Korean Elementary Science Education
    • /
    • v.17 no.1
    • /
    • pp.89-103
    • /
    • 1998
  • We study that what kind of the concepts of evaporation and condensation students of elementary school have. The results are following. (1) The students have simple concepts of evaporation on natural circumstance. However, they don't understand about various effect on evaporation. (2) They don't know where the evaporized water is comming from. (3) They have experiences on observing condensation of wale. (70%), however don't know that the water is evaporized in the air. (4) They have more understanding about evaporation, more correct concepts on condensation in circulation of water.

  • PDF

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

Experimental Study on Evaporation Heat Transfer and Oil Effect in Micro-fin Tube Using $CO_2$ (마이크로핀관 내 $CO_2$의 증발 열전달과 오일 영향에 관한 실험적 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • In this paper, the experimental results on evaporation heat transfer characteristics were reported for a micro-fin tube using $CO_2$. An experimental refrigerant loop had been established to measure the evaporation heat transfer coefficient and pressure drop of $CO_2$. Experiments were conducted for mass fluxes, heat fluxes, saturation temperatures and PAG oil concentrations. With increasing the heat flux and the saturation temperature, the evaporation heat transfer coefficient increased. At the higher mass flux, however, the exit vapor quality of the micro-fin tube was to be lower. The peak of the heat transfer coefficient was shifted toward low quality region. The evaporation pressure drop increased as the mass flux increased and the saturation temperature decreased. As PAG oil concentration increased, the evaporation heat transfer coefficient decreased and the dryout was delayed by oil addition.