• Title/Summary/Keyword: evaporation characteristics

Search Result 926, Processing Time 0.029 seconds

Fabrication and Characteristics of $CuInS_2$ thin films produced by Vacuum Evaporation (진공증착에 의해 제조된 $CuInS_2$ 박막의 제작 및 특성)

  • Yang, Hyeon-Hun;Jeong, Woon-Jo;Kim, Duck-Tae;Park, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.15-17
    • /
    • 2008
  • $CuInS_2$ thin films were synthesized by sulpurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furance annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}[cm^{-3}]$, 312.502[$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}[{\Omega}{\cdot}cm]$, respectively.

  • PDF

Experimental Study on Geometry of a Microlayer During Single-Bubble Nucleate Boiling (단일기포 핵비등 시 미세액막층 구조에 대한 실험적 연구)

  • Jeong, Seunghyuck;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.519-526
    • /
    • 2015
  • To measure the physical parameters of the simple microlayer model for the prediction of the heat flux and heat transfer rate due to the evaporation of the microlayer during nucleate boiling, the microlayer geometry was experimentally examined. The parameters, including initial thickness, moving velocity and microlayer radius, were measured by total reflection and interferometry techniques using a laser. Single-bubble nucleate boiling experiments were conducted using saturated water on a horizontal surface under atmospheric pressure. The geometric characteristics of the microlayer underneath the bubbles periodically nucleating at a nucleation site at an average heat flux of $200kW/m^2$ were analyzed. The experimental results in the present study show that the maximum initial thickness of the microlayer and the horizontal moving velocity are $5.4{\mu}m$ and 0.12 m/s, respectively.

2 Liquid Phase Purification Characteristics for Sulfur-Iodine Thermochemical Hydrogen Production (황-요오드 열화학 수소체조 공정에서 2 액상 정체 특성)

  • Lee, Kwang-Jin;Cha, Kwang-Seo;Kang, Young-Han;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.69-72
    • /
    • 2007
  • The objective of this work was to study the properties of purification of two liquid phase for exclusion of impurities in each phase. The experiments for process variables were carried out in the temperature range($H_{2}SO_{4}$ phase: $413{\sim}513$ K, $HI_{x}$ phase: $353{\sim}453$ K) and in the $N_{2}$ flow rate range($H_{2}SO_{4}$, $HI_{x}$ phase: $50{\sim}200$ mL/min). As the results, it is appeared that the principles of $H_{2}SO_{4}$ phase purification was due to stripping, evaporation and reverse bunsen reaction and $HI_{x}$ phase purification was due to stripping and reverse bunsen reaction. In purification of $H_{2}SO_{4}$ phase, the concentration rate of $H_{2}SO_{4}$ phase was controled by temperature but the temperature had few effects on yield of $H_{2}SO_{4}$. In purification of $HI_{x}$ phase, we observed products of side reactions($H_{2}S$, S) over 433 K. The purity of $HI_{x}$ phase was increased with increasing $N_{2}$ flow rate because impurites were decreased with increasing conversion of reverse reaction.

  • PDF

Characteristics of the Major Atmospheric Aromatic Hydrocarbons in the Yellow Sea

  • Park, Seung-Myung;Kim, Jeong-Soo;Lee, Gangwoong;Jang, Yuwoon;Lee, Meehye;Kang, Chang Hee;Sunwoo, Young
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • We measured the concentrations of five aromatic hydrocarbons (benzene, toluene, ethylbenzene, m,p-xylene, and styrene) in the atmosphere during four seasonal campaigns at Deokjeok and Jeju Islands in the Yellow Sea from October 2005 to June 2006. Toluene was the most abundant aromatic hydrocarbon, with median of 0.24 ppb at Deokjeok and 0.20 ppb at Jeju, followed by benzene (0.21 ppb, 0.15 ppb) and m,p-xylene (0.06 ppb, 0.06 ppb). Aromatic hydrocarbon measurements exhibited the typical seasonality of the major emission sources, such as vehicle exhaust, solvent evaporation, and regional circulation patterns. The ratios of m,p-xylene/ethylbenzene of 1.57 at Deokjeok and 1.05 at Jeju reflected the degree of proximity to outflows of each source region, South Korea and China. The toluene/benzene ratios of 1.0 were consistently both on field observations and on the 3-D chemical model simulation, which is slightly higher than that in the Western Pacific area. It implied that the air over the Yellow Sea was influenced to a great extent by the surrounding areas. We confirmed that current emission inventories of aromatic hydrocarbons in Northeast Asia reasonably reproduced temporal and spatial variations of toluene and benzene over the Yellow Sea.

Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area (대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성)

  • 백성옥;김미현;박상곤
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Preparation of Dexamethasone-21-palmitate Incorporated Lipid Nanosphere: Physical Properties by Varying Components and Ratio of Lipid (팔미틴산덱사메타손이 봉입된 지질나노입자의 제조: 지질종류와 함량에 따른 물리적 특성)

  • Jung, Suk-Hyun;Lee, Jung-Eun;Seong, Ha-Soo;Shin, Byung-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.6
    • /
    • pp.355-361
    • /
    • 2006
  • Intraarticular corticosteroid injections for therapy of rheumatic arthritis are administered with the aim of optimal local anti-inflammatory effect at the injection site. Since the side effects of corticosteroidal drug, dexamethasone(DEX), administered at hish dose limited the therapeutic efficacy, there was a need to design a new drug delivery system for controlled release of dexamethasone. As a prodrug for continuous therapeutic efficacy, dexamethasone-21-palmitate(DEX-PAL) was prepared via esterification of palmitoyl chloride and dexamethasone. DEX-PAL was identified by NMR and MASS analysis. DEX-PAL or DEX was entrapped in lipid nanosphere which could be prepared by using a self emulsification-solvent evaporation method. Physicochemical characteristics such as mean particle diameter, zeta potential and drug loading efficiency of the lipid nanospheres were investigated with variation of either the kind of lipid or the lipid composition. The lipid nanospheres had a mean diameter $83{\sim}95$ nm and DEX-PAL loading efficiency of up to 95%. The drug loading efficiency increased with the increase of aliphatic chain length attached to the phospholipid. The incorporation of cationic lipid was very efficient for both reducing particle size of lipid nanospheres and enhancing drug loading efficiency. The lipid nanospheres containing DEX-PAL may be a promising novel drug carrier for the controlled release of the poorly water-soluble drugs.

ZnO thin films with Cu, Ga and Ag dopants prepared by ZnS oxidation in different ambient

  • Herrera, Roberto Benjamin Cortes;Kryshtab, Tetyana;Andraca Adame, Jose Alberto;Kryvko, Andriy
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.193-201
    • /
    • 2017
  • ZnO, ZnO: Cu, Ga, and ZnO: Cu, Ga, Ag thin films were obtained by oxidization of ZnS and ZnS: Cu, Ga films deposited onto glass substrates by electron-beam evaporation from ZnS and ZnS: Cu, Ga targets and from ZnS: Cu, Ga film additionally doped with Ag by the closed space sublimation technique at atmospheric pressure. The film thickness was about $1{\mu}m$. The oxidation was carried out at $600-650^{\circ}C$ in air or in an atmosphere containing water vapor. Structural characteristics were investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). Photoluminescence (PL) spectra of the films were measured at 30-300 K using the excitation wavelengths of 337, 405 and 457.9 nm. As-deposited ZnS and ZnS: Cu, Ga films had cubic structure. The oxidation of the doped films in air or in water vapors led to complete ZnO phase transition. XRD and AFM studies showed that the grain sizes of oxidized films at wet annealing were larger than of the films after dry annealing. As-deposited doped and undoped ZnS thin films did not emit PL. Shape and intensity of the PL emission depended on doping and oxidation conditions. Emission intensity of the films annealed in water vapors was higher than of the films annealed in the air. PL of ZnO: Cu, Ga films excited by 337 nm wavelength exhibits UV (380 nm) and green emission (500 nm). PL spectra at 300 and 30 K excited by 457.9 and 405 nm wavelengths consisted of two bands - the green band at 500 nm and the red band at 650 nm. Location and intensities ratio depended on the preparation conditions.

A Study on the Applicability of Carbon Mold for Precision Casting of High Melting Point Metal (고융점 금속의 미소형상 정밀주조를 위한 탄소몰드의 적용성에 관한 연구)

  • Ji, Chang-Wook;Yi, Eun-Ju;Kim, Yang-Do;Rhyim, Young-Mok
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.141-148
    • /
    • 2011
  • Carbon material shows relatively high strength at high temperature in vacuum atmosphere and can be easily removed as CO or $CO_2$ gas in oxidation atmosphere. Using these characteristics, we have investigated the applicability of carbon mold for precision casting of high melting point metal such as nickel. Disc shape carbon mold with cylindrical pores was prepared and Ni-base super alloy (CM247LC) was used as casting material. The effects of electroless Nickel plating on wettability and cast parameters such as temperature and pressure on castability were investigated. Furthermore, the proper condition for removal of carbon mold by evaporation in oxidation atmosphere was also examined. The SEM observation of the interface between carbon mold and casting materials (CM247LC), which was infiltrated at temperature up to $1600^{\circ}C$, revealed that there was no particular product at the interface. Carbon mold was effectively eliminated by exposure in oxygen rich atmosphere at $705^{\circ}C$ for 3 hours and oxidation of casting materials was restrained during raising and lowering the temperature by using inert gas. It means that the carbon can be applicable to precision casting as mold material.

A study on the characteristics of double insulating layer (HgCdTe MIS의 이중 절연막 특성에 관한 연구)

  • 정진원
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.463-469
    • /
    • 1996
  • The double insulating layer consisting of anodic oxide and ZnS was formed for HgCdTe metal insulator semiconductor(MIS) structure. ZnS was evaporated on the anodic oxide grown in H$_{2}$O$_{2}$ electrolyte. Recently, this insulating mechanism for HgCdTe MIS has been deeply studied for improving HgCdTe surface passivation. It was found through TEM observation that an interface layer is formed between ZnS and anodic oxide layers for the first time in the study of this area. EDS analysis of chemical compositions using by electron beam of 20.angs. in diameter and XPS depth composition profile indicated strongly that the new interface is composed of ZnO. Also TEM high resolution image showed that the structure of oxide layer has been changed from the amorphous state to the microsrystalline structure of 100.angs. in diameter after the evaporation of ZnS. The double insulating layer with the resistivity of 10$^{10}$ .ohm.cm was estimated to be proper insulating layer of HgCdTe MIS device. The optical reflectance of about 7% in the region of 5.mu.m showed anti-reflection effect of the insulating layer. The measured C-V curve showed the large shoft of flat band voltage due to the high density of fixed oxide charges about 1.2*10$^{12}$ /cm$^{2}$. The oxygen vacancies and possible cationic state of Zn in the anodic oxide layer are estimated to cause this high density of fixed oxide charges.

  • PDF